
HTBLuVA Wiener Neustadt
Höhere Lehranstalt für Informatik

DIPLOMARBE IT

Lego Recognition Tool

Ausgeführt im Schuljahr 2017/18 von:

Christine ZEH 5CHIF-25

Simon BABOVIC 5CHIF-3

Betreuer / Betreuerin:

Dr. Michael Stifter

Wiener Neustadt, am 31 March 2018

Abgabevermerk:

Übernommen von:

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche
erkenntlich gemacht habe.

Wiener Neustadt, am 31 March 2018

Verfasser / Verfasserinnen:

Christine ZEH Simon BABOVIC

i

Contents

Eidesstattliche Erklärung i

Abstract v

Kurzfassung vi

1 Introduction 1

1.1 History . 1
1.2 Bricklink . 2
1.3 Task . 3
1.4 Technologies . 3

2 Assisting functions 5

2.1 Database . 5
2.1.1 Database structure . 5
2.1.2 Reducing the number of parts . 6

2.2 Scale . 7
2.2.1 Weight Groups . 7
2.2.2 The Advantage of pre-sorting . 8
2.2.3 The Scale used to identify the weight group of a part 8
2.2.4 The Problem with pre-sorting . 9
2.2.5 Software . 9

2.3 Image Processing . 11
2.3.1 OpenCV - Open Source Computer Vision Library 11
2.3.2 Changing the Colourspace . 11
2.3.3 Smoothing the Image . 12
2.3.4 Image Thresholding . 13
2.3.5 Morphological Transformation . 13
2.3.6 Removing static disturbing objects 14
2.3.7 Removing white borders . 15
2.3.8 Reducing the Size . 16
2.3.9 Result . 16

3 Physical Structure 17

3.1 System . 17
3.1.1 RaspberryPi 3 . 17

3.2 Surrounding Components . 18
3.2.1 Number of cameras . 18
3.2.2 Illumination . 18
3.2.3 Placement . 18

ii

Contents iii

3.3 Angle of view . 19
3.4 Camera . 20

3.4.1 Problems . 20
3.4.2 Chosen Product . 21

3.5 Camera-Box . 22
3.5.1 Building the Box from scratch . 22
3.5.2 BOSCH Pro�les . 23
3.5.3 Chipboard Box . 23

4 Part Classi�cation 25

4.1 Recap . 25
4.2 Measurement Procedure . 25
4.3 Choosing the right approach . 25

4.3.1 Feature Detection . 26
4.3.2 Learning Models . 26

4.4 Machine Learning System . 26
4.4.1 Di�erent Machine Learning Systems 27
4.4.2 Fitting the task . 27
4.4.3 Convolutional Neural Networks . 29
4.4.4 Designing a test network . 29
4.4.5 Optimiser . 32
4.4.6 Prevent over�tting . 34

4.5 Expanding the Network . 35
4.5.1 Testing the correct operation . 35
4.5.2 Wrong Assumptions . 36
4.5.3 Correction of the Mistake . 36
4.5.4 Number of outputs . 37

4.6 The learning process . 37
4.6.1 Virtual generation of training data 38
4.6.2 Learning of the general structures . 39
4.6.3 Learning in the measurement environment 40
4.6.4 Predicting the part number . 40

5 User Interface 41

5.1 The Bridge . 41
5.1.1 Libraries used to establish communication 42
5.1.2 Message Types . 42

5.2 Database API . 43
5.2.1 Used libraries to implement http methods 43
5.2.2 Mode of operation . 44

5.3 Architecture . 44
5.3.1 States . 44

5.4 Frontend . 44
5.4.1 Used Libraries to create a good user experience 45
5.4.2 User Interface Client . 46
5.4.3 Networks . 47
5.4.4 Live Preview . 48
5.4.5 Reinforcement Learning . 48
5.4.6 Virtual Learning . 49

5.5 Installation . 50

Contents iv

5.5.1 Preconditions . 50

6 Conclusion 51

6.1 Recap . 51
6.1.1 Image classi�cation software . 52
6.1.2 Mechanical setup . 52
6.1.3 User interface . 52
6.1.4 Summary . 53

6.2 Outlook . 53
6.2.1 Mechanical concepts . 53
6.2.2 Software improvement . 54
6.2.3 System improvement . 55

Bibliography 56

Abstract

This diploma thesis' goal was, to develop a machine, which is capable of identifying Lego
bricks and sorting them into boxes. At �rst, there had to be thought of ways to successfully
identify a piece of Lego. The idea of using a scale arose.

The analysis of the weight information, which is stored in the Bricklink database, brought
up, that with the weight, a part can be identi�ed with an accuracy of at least 90%. As it
turned out the weights in the database are not accurate, the focus shifted to identifying
Lego parts with cameras and the scale from then on has been used as assisting function.
The next idea was to work with neural networks and image classi�cation.

As for a neural network capable of distinguishing between all Lego parts huge computing
power and loads of training data is needed, the choice was to limit the number of dis-
tinguishable parts to �ve. Three cameras are used in di�erent angles, to achieve a good
all-around view of the part. As it turned out, that the amount of training data needed
even for such a small neural network is still enormous, it was decided to again shift the
focus and to concentrate on reducing the amount of the required training data. This was
done by a process called image preprocessing. In this process the pictures taken from the
part get reduced to only necessary information, by for example removing the background
of the image.

To make this process easier, a prototype camera box was constructed, which �ts well for
image preprocessing. Additionally a transporting system for the Lego parts should have
been developed, but as this turned out to be too complex for an IT diploma thesis, it got
replaced by developing an user interface. It's task is to visualise the process of learning
and image classi�cation to the user. For this, a server was developed, which, because of
JavaScript being limited to Websockets, acts as a bridge between Websockets and TCP
streams.

Furthermore, a method was developed to automatically generate training data for the
neural network, as the manual creation of it is enormously time consuming. It is called the
virtual learning method. With this method, training data is created by virtually making
pictures of three-dimensional Lego models. It requires further development as it is in an
early stage, but it is most likely to bring the project to production, as it removes the need
of creating training data manually.

Although the main goal was not achieved due to the underestimation of mechanical com-
plexity and lack of time and budget, yet this diploma thesis provides a �rm basis for further
development.

v

Kurzfassung

Das Ziel dieser Diplomarbeit war es, eine Maschine zu entwickeln, die Legosteine identi-
�zieren und in Boxen sortieren kann. Zu aller erst musste überlegt werden, wie eine Mas-
chine so einen Stein erfolgreich erkennen kann. Die Idee eine Waage dafür zu verwenden
entstand.

Die Analyse der Gewichtsinformationen in der Bricklink-Datenbank ergab, dass man mithilfe
des Gewichts eines Legosteins diesen mit einer Genauigkeit von mindestens 90% identi-
�zieren kann. Als jedoch erkannt wurde, dass die Gewichtsinformationen in der Datenbank
nicht exakt sind, wurde der Fokus darauf gerichtet, Legosteine mithilfe von Kameras zu
erkennen. Die Waage wird weiterhin in assistierender Funktion verwendet. Die nächste Idee
war, ein neuronales Netz zur Bilderkennung zu verwenden.

Weil ein neuronales Netz, dass zwischen allen Legoteilen unterscheiden kann, sehr viel
Rechenleistung und riesige Mengen an Trainingsdaten benötigt, wurde entschieden die
Zahl der erkennbaren Teile auf fünf zu limitieren. Es stellte sich heraus, dass selbst für
so ein kleines Netz extrem viele Trainingsdaten benötigt werden. Der Fokus wurde nun
darauf gelegt, die Menge der gebrauchten Trainingsdaten zu reduzieren. Das wurde durch
Bildvorbearbeitung erreicht. Dabei werden vor der Bilderkennung Störfaktoren wie zum
Beispiel der Hintergrund entfernt und das Bild auf das wesentliche reduziert.

Um diesen Prozess zu vereinfachen, wurde ein Prototyp einer Kamerabox entwickelt, der
sich gut zur Bildvorbearbeitung eignen soll. Zusätzlich sollte noch ein Transportsystem
für Legosteine entwickelt werden, jedoch stellte sich schnell heraus, dass dies zu komplex
für eine Informatik Diplomarbeit ist. Also wurde dieser Teil mit der Entwicklung einer
Benutzerober�äche ersetzt. Die Aufgabe dieser Ober�äche ist es, dem Benutzer die Abläufe
des Lernens und der Bilderkennung zu visualisieren. Für diesen Zweck wurde ein Server
entwickelt, der, da JavaScript auf Websockets limitiert ist, als Brücke zwischen Websockets
und TCP Streams agiert.

Des Weiteren wurde eine Methode, um Trainingsdaten automatisch generieren zu lassen,
entwickelt, da das manuelle erstellen von Trainingsdaten extrem viel Zeit in Anspruch
nimmt. Die Methode wurde "Virtual learning method" genannt. Mit ihr werden Train-
ingsdaten erzeugt, in dem virtuell Fotos von dreidimensionalen Modellen von Legoteilen
gemacht werden. Sie benötigt noch Entwicklungsarbeit, ist aber am wahrscheinlichsten der
Schlüssel zum Erfolg dieses Projekts, da sie die Notwendigkeit von manueller Erstellung
von Trainingsdaten beseitigt.

Auch wenn das Hauptziel dieser Diplomarbeit durch das Unterschätzen der mechanischen
Komplexität und durch Zeit- und Budgetmangel nicht erreicht wurde, so bietet sie trotzdem
eine solide Basis für zukünftige Entwicklungsarbeit.

vi

Chapter 1

Introduction

Author: Christine Zeh

Everyone has already played with Lego bricks before. It is the largest toy company in the
world and has a yearly revenue of 5.1 billion Euro.

Figure 1.1: The Lego logo after the redesign in 1998.1

1.1 History

In 1932 Ole Kirk Kristiansen establishes his company to build household supplies and
wooden toys. The companies name is Lego, from the Danish words "Leg Godt" which
means "play well". 1949 Lego rolled out a precursor of the bricks known nowadays, called
"Automatic Binding Bricks". They were available in two di�erent sizes and four colours.
Over the next few years an increasing number of di�erent brick moulds were invented and
in 1955 the "System of Play" was released with it's �rst set (see �gure 1.2).2

Figure 1.2: The Lego catalogue with the System of Play in 1955.3

1Lego logo.
2Lego.

1

1. Introduction 2

In the year 1966 706 million bricks are produced and sold in 42 di�erent countries all over
the world. In the 1980's 70 percent of all families, with children under 14 years old, possess
some sort of Lego bricks.4 And this remains true up to the present day. With Lego Films,
Lego Worlds, Lego Video games and Lego sets of nearly every movie, city or scene one can
think o�, there's something for everyone. This is why adult people are still fascinated by
the possibilities when creating with Lego.
Nathan Sawaya was the �rst artist to use Lego bricks to express himself. Since 2001 he has
been building his sculptures containing between 100.000 and up to multiple million bricks.
In �gure 1.3 one of his creations is pictured.

Figure 1.3: A sculpture named "Red" from Nathan Sawaya built out of Lego bricks.5

1.2 Bricklink

At some time around 2000, buying Lego sets in the store wasn't enough for a programmer
from Hawaii and he created the website Bricklink. It enabled people to sell their old sets,
bricks and anything linked to Lego. Approximately 830.000 member can shop from 11.000
shops selling on this website.6 Some of them are individuals, but for most of them it's their
main profession.

A completely new work area has emerged, where old bricks are bought, sorted and resold.
This professional �eld could emerge because of three main reasons.

� It is not important when the brick was made, because Lego parts are downward
compatible.

3Brickfetish.
4Lego.
5Nathan Sawaya.
6Bricklink .

1. Introduction 3

� 485 billion bricks have been printed since the company started and there's a high
chance of discovering old bricks at home

� A higher price is paid if the bricks are sorted

That's why online and backyard �ea markets are looted to �nd good maintained and cheap
Lego. After enough Lego parts are gathered up they need to be di�erentiated per part an
colour. But to earn valuable pro�t thousands of them have to be sold. The sorting of tons
of bricks is therefore necessary.

Assuming a human needs three seconds to sort one Lego piece, 1000 parts take 50 minutes.
Further assuming each workforce gets paid ten Euro per hour, the sorting of one Lego
piece costs 0.8 cents. This amount is fairly high, considering the average selling price for
one part is about three cents. To reduce the cost per part the process of sorting should be
automatised.

1.3 Task

During this diploma thesis a prototype for the autonomous recognition and semi automatic
separation is developed. The operation is administered through a user interface. With the
interface multiple part groups can get managed. Each group can contain up to �ve parts
to classify simultaneous. Parts not associated with another part are presented accordingly.

The software is designed to allow for autonomous sorting in the future. Therefore to sim-
plify the construction of a compatible mechanical system, concepts to realise the sorting
mechanism are developed. These concepts are introduced in the conclusion in chapter 6.

1.4 Technologies

The idea of building a sorting machine is not new. In fact in the the last few years many
di�erent Lego sorting systems have been developed. They range from performing simple
tasks to very complex ones. The two most developed ones on the internet were realised by
Richard Chow7 and Jacques Mattheij.8

Sorting with the machine built by Richard Chow is done entirely mechanically. The parts
pass gaps on a conveyor belt. If the parts are small enough they fall into the hole onto
the below conveyor belt or in a bucket. Another di�erentiation can be achieved by passing
under a obstacle. If the brick is to high, it slides down to get to the correct path to its
associated bucket.

The machine from Jacques Mattheij is a more software based construction. Multiple months
he has been working and improving his software. Since last year his machine can sort similar
groups of bricks or if wanted colour groups. His program identi�es the bricks through a
neural network.9 This approach is only made possible a few years ago due to an achievement
made by Geo�rey Hinton (in chapter 4 the subject is dealt with).

7Sort Your Legos Like an Engineer .
8Jacques Mattheij .
9Mattheij, �How I Built an AI to Sort 2 Tons of Lego Pieces�.

1. Introduction 4

Although these developments ful�l their task well and precise, these implementations are
not necessarily suitable for the mass market.
To name some reasons:

� To perform mechanical sorting enough space has to be available. The sorting machine
has measurements of 1.5 x 3 meters and if more than standard bricks need to be
sorted, multiple machines have to be set up.

� With mechanical sorting the expansion is time consuming, because new sorting mech-
anism need to be developed.

� The implementation created by Jacques Mattheij is expensive. To perform fast enough
classi�cation a GTX1080 Ti Nvidia video card10 at a price of 700 Euro is needed.

� At this point the second solution sorts parts in similar groups. With this solution a
further sorting is indispensably.

Our intention is the development of a low budget system to perform the identi�cation
task only on a few parts. This low price allows to put multiple machines in succession and
therefore enables the sorting of a very diverse repertoire of brick moulds. For this reason
the costs are an essential factor throughout this diploma thesis.
Further on a user interface to administer the processes simpli�es the handling. This enables
the expanding and controlling of systems even for untrained operators.

10GTX1080 Ti Nvidia card .

Chapter 2

Assisting functions

To be able to identify parts, data has to be gathered and transmitted to the classifying
function. This is the purpose of the assisting functions. This area covers the database with
the detectable parts and example images, the scale and it's associated interface and the
information extraction from the images.

2.1 Database

Author: Christine Zeh

A database is accumulation of data. It is managed by a Database-Management-System
(DBMS), that standardises every form of adaptation and access. It provides languages to
store, manipulate and request the information. Relations between information can be rep-
resented in a more e�cient way. This is achieved through tables, which represent relational
elements with shared characteristics. Each table can be related to multiple other tables.
To guarantee uniqueness of an element, a primary key can be used. Furthermore, with this
key the relation between two elements is identi�ed.1

2.1.1 Database structure

The task of the database is to provide all possible detectable parts and the saved neural
networks with its associated categories and parts. This is achieved by three interconnected
tables (illustrated in �gure 2.1). The biggest one contains all possible parts, which have
the correct size to be detected. The table Saved Networks contains the path to the save
networks. It is referenced by the table Detectable Parts, which consists of the parts that
can be classi�ed by the network.
The website Bricklink manages the biggest database of existing Lego parts.2 Based on this
database the table containing all parts is constructed. Most of the bricks get an assigned
part number from Lego which is moulded on the brick. If no part number was assigned or
additional information is needed to obtain uniqueness Bricklink assigns or extends the part
number. The assigned part number can be a constant or a descriptive name. In illustration
2.2 the di�erent ways of naming parts is outlined.3

1Hillebrand, Datenbanken und Informationssysteme.
2Bricklink .
3Bricklink Naming Scheme.

5

2. Assisting functions 6

Figure 2.1: The tables with their descriptive attributes and the relations between them.

Figure 2.2: EBNF diagram of the part numbering scheme

Base Part The base part number is 4-5 digits long and moulded on the part or a
constant or descriptive name assigned by Bricklink.

Mould If di�erent types of moulds exists, di�erent moulds are followed by a letter
assigned in consecutive alphabetical order.

Pattern If di�erent pattern types exists, each gets an assigned number, preceded
by a constant.

Assembly If the part consists of multiple components, the pre�x 'c' is appended,
followed by a sequential number

2.1.2 Reducing the number of parts

The initial table from Bricklink consists of 47347 elements from 199 categories. Only dis-
tinctive bricks should remain in the �nal table.

First of all, categories containing special parts are located. The removing of this categories
included around 10000 elements.
In the next step around 1000 parts without weight are deleted.
The biggest deletion consisted of all parts with special patterns or moulds. If a part had a
associated base part it is deleted. This removed again around 28000 pieces.
In the end around 8000 parts are left. This reduction ensured a more simpli�ed search,
although with a closer inspection even more parts could be excludes.

2. Assisting functions 7

2.2 Scale

Author: Simon Babovic

As Lego parts come in a huge variety of sizes and shapes, it makes perfect sense to use
every property of a piece to identify it. One such property is weight. To measure the weight
of a Lego part, a scale had to be bought. But at �rst, some research has been made to
determine the type of scale to buy.

2.2.1 Weight Groups

To save time and resources (e.g. CPU time), the �rst idea was to sort out Lego parts by
weight before they run through image-classi�cation. The image-classi�er is dealt with in
chapter 4. All existing Lego parts can be grouped in 1829 weight-groups and the ones which
are represented with an unde�ned weight in the parts database. These unde�ned weight
parts are mostly stickers, which are not part of the project so they got removed from the
database. The average size of each group is 24, with a maximum size of 2771 pieces. There
are 756 Lego parts which can be sorted out without image-classi�cation in theory, due to
their unique weight in the database. To get an overview of the parts and their weight, a
graphical comparison of weight-groups and the amount of parts within this weight-group
was created (See 2.3).

Figure 2.3: All groups zoomed into origin, because the plot would be to big to show the
entire one.

As �gure 2.3 shows, there are much bigger weight groups at the the very small weights. This
implies that most of the parts are very lightweight. This has to be taken adequately into
account when selecting a scale. As �gure 2.3 makes almost no statement for the majority
of the parts, a new plot was created to take a look at the very tiniest parts of the database
(See �gure 2.4). This graph clearly shows where most of the parts cluster. In the tiny
spectrum of 0.5 gram to 1.5 gram there are at least 9000 parts. This greatly depicts the
incredible amount of variety in Lego parts.
Now a question comes up. When there are so many parts with almost the same weight,
does it even make sense to pre-sort them with scaling? Yes.

2. Assisting functions 8

Figure 2.4: Weight-groups with a weight of 0 to 5 gram.

2.2.2 The Advantage of pre-sorting

To illustrate the big advantage of the scale, relative numbers will be used instead of absolute
numbers. As mentioned above, the average size of a weight-group is 24. With a total of
about 30000 parts in the database, this means the the complete dataset is reduced to 0.08%
of it's size. Even in the worst case with the largest weight-group, the reduction lies at 9.2%,
which saves massive amounts of CPU-time.

2.2.3 The Scale used to identify the weight group of a part

Each weight-group di�ers in a minimum of 0.01 gram. To obtain the most accurate and sta-
ble results, a precision scale was chosen (see �gure 2.5). It provides an Ethernet Adapter to
stream the data. To determine when the data is transmitted, di�erent options are available.

Stability Sends data automatically upon stability

Accepted Range Automatically outputs data if it's in a speci�c range

Continuously Repeatedly sends data as fast as possible

Periodic Sends data after indicated time

To achieve the most exact results, the Stability option is used.

2. Assisting functions 9

Figure 2.5: Ohaus Scout skx622 precision scale

2.2.4 The Problem with pre-sorting

After a few tests were made with the new scale, some new problems emerged. It came out,
that the weights in the database are not precise. Furthermore problems with very old Lego
parts got detected. It seems Lego parts lose a perceivable amount of weight after a while of
use through deterioration. This led to the decision not to pre-sort Lego parts and instead
provide the weight to the part classi�er as additional information. The more input data a
classi�er gets, the better.

2.2.5 Software

Process

A Python program opens a connection to the scale and awaits the transmission of strings.
The string contains useless characters, which need to be removed. Afterwards with a
database the weight-group with the speci�c weight is returned and presented in a table
(see �gure 2.6).

2. Assisting functions 10

Figure 2.6: Output of the program.

Code

With the library async.io a connection to the scale is opened. To start receiving data, a
message has to be send �rstly. Then, in an endless loop, the program waits for a responds.
If it receives a response, the data is striped to �lter out the number. This number is then
used to create the table.

1 reader, writer = yield from asyncio.open_connection('169.254.1.1', 9761, loop=loop

)

2

3 writer.write(message.encode())

4

5 while(True):

6 data = yield from reader.read(100)

7 print('Received: %r' % data)

8

9 try:

10 data = data.strip(' \t\n\r g')

11 num = round(float(data), 2)

12 print(num)

13 getTable(num)

14 except ValueError:

15 pass

2. Assisting functions 11

2.3 Image Processing

Author: Christine Zeh

To improve the speed and correctness of the classi�cation unnecessary information has
to be removed. Multiple libraries provide functionality to perform this task. With these
libraries di�erent algorithms get applied to the image to improve the legibility of structural
information.
The image preprocessing works through six to seven steps

� Changing the Colorspace

� Smoothing the Image

� Image Thresholding

� Morphological Transformation

� Removing static disturbing objects

� Removing white borders

� Reducing the Size

2.3.1 OpenCV - Open Source Computer Vision Library

This open source library has the aim at real-time computer vision. The library was o�cially
launched in 1999 by Intel4 with the intention to o�er a joint infrastructure and dissemi-
nate vision knowledge by making their project accessible for everyone. It provides prebuilt
methods for all kind of types of working with graphics. 3D reconstruction, video analysis,
image processing and machine learning are only a few sectors they provide Libraries to.

2.3.2 Changing the Colourspace

"Colour space is a three-dimensional geometric space with axes appropriately de�ned so
that symbols for all possible colour perceptions of humans or other animals �t into it in
an order corresponding to the psychological order.5"
Colours get represented by distinct numbers, which vary for each colourmodel. Through
changing the colour space the discrimination of colours can be improved. To remove the
information of color for di�erent Lego-pieces the image is converted to a greyscale image.
In the greyscale colourspace intensity substitutes the colour information. The intensity per
colour can be calculated with the brightness of red, green and blue, the primary colours in
the RGB Model (see �g 2.7).6

4Intel Corporation.
5Kuehni, Color Space and Its Divisions: Color Order from Antiquity to the Present .
6Ibid.

2. Assisting functions 12

(a) RGB colourspace (b) greyscale colourspace

Figure 2.7

2.3.3 Smoothing the Image

Smoothing is used to reduce noise or pixelation of an image. Most smoothing methods
use a low-pass �lter as a basis. It reduces high-frequency information, which decreases the
disparity between pixels. Through this process, the next steps will have a stronger e�ect.
For the implementation of the lower disparity, a kernel is convoluted to the image. Through
changing kernel size the smoothing e�ect intensity is adapted.

The convolution is done between the kernel, which is �ipped by row and column, and an
image piece.a b c

d e f
g h i

 ∗
1 2 3

4 5 6
7 8 9

 [2, 2] = (i·1)+(h·2)+(g·3)+(f ·4)+(e·5)+(d·6)+(c·7)+(b·8)+(a·9)

(1)
Each values on the equivalent position in the matrices get multiplied and the outcome is
added up. The value of the centred pixel of this section gets the resulting number.

The weights of a Gaussian kernel are arranged to be equivalent to calculating a weighted
average of the corresponding image pixels. Using box- or disk-shaped kernel strong ringing
and truncating e�ects are created, therefore are not well suited7 (see illustration 2.8).
Typical structures for the three kernel mentioned can be

1 1 1
1 1 1
1 1 1

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
0 0 0 1 1 1 0 0 0

3x3 Box-shaped kernel 5x5 Gaussian kernel 9x9 Disk-shaped kernel

(2)

7Burger and Burge, Principles of Digital Image Processing: Advanced Methods.

2. Assisting functions 13

(a) Original Image (b) box-shaped kernel (c) Gaussian kernel

Figure 2.8: Comparison of di�erent kernels with (a) as original image, (b) outlines the
truncating e�ects of a box-shaped kernel. At image (c) a Gaussian kernel is applied.

2.3.4 Image Thresholding

"Thresholding is a process of converting a grayscale input image to a bi-level image by
using an optimal threshold.8"
The aim is to extract objects from the background. Thresholding algorithms classify in
two groups. The di�erent types are demonstrated in �gure 2.9.

Global Thresholding Algorithms

Global thresholding algorithms use a single threshold for the whole image. This is only
applicable if object and background values are fairly consistent.

Adaptive Thresholding Algorithms

Better results with variable lighting or areas are ensured through the adaptation of the
threshold value for di�erent areas in the image. The local threshold can be calculated by
either the average values of the neighbours or the accumulated values weighted with a
Gaussian window.9

By using adaptive thresholding only the outlines of the Lego Piece are maintained to
represent the structure of the part.

2.3.5 Morphological Transformation

To enhance recognizability and minimise disruption a kernel gets applied to the binary
image. It is similarly structured to convolution. (see 2.3.3).

Erosion

Each element under the kernel is set to zero if not all pixels hold the value one. Pixels near
boundaries get distracted, this allows the removing of small grain, also called white noise.

8Devi, �Thresholding: A Pixel-Level Image Processing Methodology Preprocessing Technique for an

OCR System for the Brahmi Script�.
9Ibid.

2. Assisting functions 14

(a) (b)

(c) (d)

Figure 2.9: (a) is the original image with non-uniform illumination. Global thresholding
with a value of 127 was applied to (b). An adaptive threshold with an average sum of
the neighbours is used for (c). The Gaussian weighting of the neighbours for the threshold
achieves the best result (d).

Dilation

Each element under the kernel receives the value one if a minimum of one pixel is one. The
outcome is the increasing of foreground, which eliminates small black holes in white areas.

The Combination

Operation of the methods in succession can prevent altering the width and heights of
objects (see 2.10). To remove small black spots from the image, after it was altered to
binary colours by adaptive thresholding (see 2.3.4), Erosion was applied as a �rst step and
afterwards Dilation was used.

2.3.6 Removing static disturbing objects

This step is easy to accomplish but has a major impact on the later identi�cation of the
part. It is possible to skip this process by removing the gaps in the measurement environ-
ment. This gap however, appears currently disruptive on the processed image.

2. Assisting functions 15

(a) (b) (c)

Figure 2.10: Image (b) displays the removing of white noises from original image (a).
Erosion and dilation consecutively lead to this result. Black points in the foreground (c) get
removed by dilation followed by erosion (d).

As the object is static, pixel wise removing of the lines is possible. Through trial and error
the coordinated of the start and end point has to be determined. When they are known,
a white line can cover the disruption. As the camera angle can change slightly, the line is
wide enough to balance the o�set. In �gure 2.11 a descriptive line is laid over the disruptive
gap.

Figure 2.11: The removing of static lines can minimise the disruption and improve the
result. For better recognisability the covering line is coloured red.

2.3.7 Removing white borders

In �gure 2.11 an image of a brick captured in the measurement environment is illustrated. It
can be seen that only a small section keeps the information. To minimise the uninformative
space white borders are removed. This is achieved by counting black pixels in each row
and column. If the count is less than a speci�c number the line is cut.
The possibility of cutting parts of a brick is accepted in favour to guarantee image noise,
too heavy to be removed by the morphological transformation, is also cut away.

2. Assisting functions 16

2.3.8 Reducing the Size

To ensure faster computation the size of the images is reduced to the minimal possible
size. The height and width experienced as appropriate to store enough information is 150
pixels each. The image has the same height and width measurements as the placement of
the part is random. Therefore it can't be anticipated which side has to be wider.

Although the received image doesn't has the measurements of a square. To prevent tearing
or straining of the image, white borders are again added until the the desired shape is
achieved. Afterwards it is shrunk.

2.3.9 Result

Through the steps of preprocessing the image is reduced to retain only relevant informa-
tion. Only identi�cation of the shape should be possible with a minimal amount of other
information left (see 2.12).

(a) (b) (c)

Figure 2.12: The necessary steps to maintain only relevant information applied to all three
used perspectives.

Chapter 3

Physical Structure

Author: Simon Babovic

As the project progressed, some answers to various questions had to be worked out, such
as:

� What system should the part classi�cation process run on?

� How many cameras are needed?

� How does a properly designed surrounding for image processing look like?

� Shape

� Colour

� Illumination

� Where to place such a setting?

� If multiple cameras are used, how would they �t in the surrounding without inter-
fering with it?

The big challenge is, to design the surrounding in a way that the software has no need for
consuming big amounts of ressources, and at the same time to �nd common ground with
simplicity.

3.1 System

The main aim for the project is to develop a well working part classi�cation process with
minimal �nancial e�ort. As Microsoft requires charged licences, the decision on the operat-
ing system fell on Linux based operating systems. For experimental purposes a Mac Book
Pro 13" Late 2014 was used. A Mac Book or similar systems are clearly no low budget
solution, so an alternative had to be worked out.

3.1.1 RaspberryPi 3

The RaspberryPi 3 is a microcomputer with an ARM chipset. It runs Raspbian as operating
system, which is based on Debian. It has a processor with a speed of 1.2GHz and an onboard
memory of 1GB. It is available online for 35e, so it de�netly is the best low budget solution.
In comparison with the Mac Book Pro 13" Late 2014 the RaspberryPi 3, in the speed's
view, is clearly a poorer solution than the Mac. However, the microcomputer is a cheap
solution for users who do not need the part classi�er to operate at high speeds, so all the
hardware used for the process is going to be compatible with the RaspberryPi 3.

17

3. Physical Structure 18

Figure 3.1: RaspberryPi 3

3.2 Surrounding Components

3.2.1 Number of cameras

As the cameras had to be bought to keep the project running, the most important decision
which had to be made, was how many cameras should be used for image processing. It
soon became clear, that there need to be two cameras to properly detect the shape of a
Lego piece. As there is going to be no mechanical mechanism to place a Lego brick into a
prede�ned standard position, a third camera was added to provide additional information
to the part classi�er.

3.2.2 Illumination

The most important property of a light to buy for the illumination of the setting is, that
the lamp �lls the complete setting with almost the same amount of light. Most commercial
available light bulbs illuminate unequally in space. The easiest solution is, to use a LED
spotlight, which gets connected to the setting at the top. Therefore the light also minimises
the shadow casting of Lego parts.

3.2.3 Placement

At �rst, the plan was to build an surrounding around the scale, because this seemed to
be the easiest solution. But after some attempts to build a provisional frame around the
scale, it soon became clear that this idea was the easiest to think of, but not the easiest
to implement. One of the reasons for this is, that the scale's top is too small to put three
cameras around and preventing them to look at each other. This, the fact that the scale has
colored parts and the highly re�ective property of the scale's top, brings up the followinig
solution.

Solution

The image processing setting and it's parts need to be well geared to each other. The scale
is not a component of this setting, so it should not play a role in it. The goal is to construct
a surrounding, which is homogenous of color and prevents light re�ection, which can be a
problem to the cameras.

3. Physical Structure 19

The best way to achieve this is to construct a camera-box, to place it near the scale and
to build a mechanism, which after scaling brings the Lego part to the camera-box.

3.3 Angle of view

"In photography, angle of view (AOV) describes the angular extent of a given scene that
is imaged by a camera."1

The basis of the design is the angle of view of the cameras. So before making a �rst design
attempt, the angle of view had to be measured. This was accomplished by pointing the
camera to a �at surface a 90 degree angle, taping the borders of view and measuring the
distance from the �at surface to the camera. Now, to �nd out the angle, a true to scale
sketch got produced (see �gure 3.2), and the angles were measured from the sketch.

Figure 3.2: A true to scale sketch of the angle of view of the used cameras

After gaining knowledge about the angle of view of the cameras, everything was on place
to design a camera-box which �ts all the requirements listed above.

1Angle of View .

3. Physical Structure 20

3.4 Camera

Author: Simon Babovic

As seen in chapter Scale (�gure 2.3), there are some Lego-parts, which share the same
weight-class with other bricks. To specify one piece of Lego out of all the other ones, a
software should identify the form of it using cameras. While testing various cameras which
were lying around in the robotics lab, it became clear that choosing a camera would be
very challenging.

3.4.1 Problems

Illumination

The �rst experiment showed, that most of the cameras' frame frequencies did not match
with the rate of the light emitted from a lamp with an alternating source. This caused a
�ickering in the transmitted images. For this problem three solutions had been drafted.

Finding a camera with adjustable frame frequency: This would be the easiest so-
lution, but at this time there was no guarantee that there is a camera which meets
all the other criteria and allows to change it's frame frequency at the same time.

Changing the source: In this solution, the alternating source would be replaced with a
direct current like a car battery. This would solve the problem of a �ickering light
bulb and the software could work as it is supposed to.

Compensate with software: Another idea was, to take multiple pictures in short peri-
ods and to lay these pictures on top of each other to compensate the �ickering e�ect
which caused the software to not working properly.

Solution As it later transpired, the �rst solution is an option. As this one is the easier
to implement than the software solution and changing the source would require further
testing with a direct current, the �rst solution was chosen.

Image resolution

While testing with di�erent pieces of Lego, it became clear, that low-resolution cameras
have problems with little holes and nubs. The picture taken seems to be clear enough for
image processing, but the shadow of the brick endowed uncertanty for the software about
where - in a hole - the part ends and the background starts. After testing with higher res-
olutions (FullHD iPhone camera), this problem was solved. The ressource-expensive image
processing in mind, further testing was initiated to see, if same results can be achieved
with lower resolutions. But it seems to be the minimum requirement to have a FullHD
(1080x1920) resolution for detecting holes in Lego bricks.

Integration

It must not be forgotten, that the whole system must be runnable on a RaspberryPi 3, so
the cameras need to be compatible with it. As the RaspberryPi 3 has a completely di�erent
chipset than customary computers, there has to be a driver for the camera to enable it to
run on this chipset. This hugely constraints the selection.

3. Physical Structure 21

Price

Because the project runs on low budget, there is always an eye on the price of a component
too. The cheapest solution would be the Raspberry Camera Module V2, but as always,
there is a problem with the cheapest solution. This camera has a special connector, which
makes it impossible to connect multiple cameras to the RaspberryPi at once, without
buying a special splitter, which is sold on demand, which means, it has a delivery time of
over a month. So other solutions had to be searched.

3.4.2 Chosen Product

The best camera to choose turned out to be the Logitech C922 (see �gure 3.3). It carrys a
driver which is compatible with the ARM chipset of the RaspberryPi, it has the option to
programmatically andjust the image frame rate and with a price of 119e, it is a little bit
expensive, but stays within the budget.

Figure 3.3: Logitech C9222

3. Physical Structure 22

3.5 Camera-Box

Author: Simon Babovic

At �rst, there was only one idea on how to build a camera-box, namely to design every part
of it and stamping the parts out of aluminium. There was just one problem: aluminium is
strongly re�ective. Light re�ection is a big problem when it comes to image classi�cation.
The easiest solution was, to buy a non-re�ective adhesive white foil and to face it to the
parts of the camera-box.

3.5.1 Building the Box from scratch

As the baseplate is the most important part in the camera box, it became the �rst part to
be designed.

The Baseplate

The �rst try was to minimize the cameras' dead angles and making the baseplate big
enough to prevent the cameras looking at each other. As the angle of view of the cameras
is very small, there are no 90 degree angles at the corners of the baseplate. This ensures
minimal dead spots. (See �gure 3.4).

Figure 3.4: Baseplate draft: Solid lines represent the shape of the baseplate, dashed lines
represent the angle of view of the cameras and the red dot in the middle represents the
center, resp. the point at which the third camera is looking at.

For the purpose of testing, before designing further parts, the baseplate got stamped out
and adhered with the white non-re�ective foil. The test results were great. The foil worked
perfectly, the plate was big enough to prevent cameras looking at each other and dead
angles were minimal. But after some time, a task based problem came up.

3. Physical Structure 23

Scalability Problem

In order to maximize e�ciency, the customer wants to add more and more machines to work
simultaneously. This is a problem, because when the machine is not built of standardized
parts, it becomes very hard to scale, causing the path from prototype to production to
extend signi�cantly. Because of this, and the fact that this project focuses on software, not
construction, the idea of building the box from scratch got discarded. The new idea was
to use BOSCH Pro�les.

3.5.2 BOSCH Pro�les

BOSCH Pro�les are standardized parts, which come in various sizes and shapes (See �gure
3.5a). With them, it is possible to build almost everything someone can think of. As shown
in �gure 3.5b, there are easy ways to construct such simple things like boxes. Even entire
machines can easily be built of BOSCH Pro�les only (See �gure 3.5c). There is just one
problem.

(a) basic BOSCH Pro�le parts (b) small construction
(c) machine built of BOSCH
Pro�les only

Figure 3.5: Examples of BOSCH Pro�les and their use.

The price of the parts needed to construct a camera-box with all the requirements would
overrun the project's budget with a factor of three, so the idea had to be discarded too.
But it was not a complete waste of e�ort scouring through catalogues searching for suitable
parts.

From Prototype to Production

The advantages of BOSCH Pro�les provide a facility to bring the prototype to production.
The next idea was, to construct a camera-box from non-standardized parts, but keeping it
simple, so that the prototype can easily be recreated with BOSCH Pro�les, bringing the
prototype to production.

3.5.3 Chipboard Box

The idea this time was, to buy white chipboard plates, cut them to size and bolt them
together. The inner size of the box has to be about 20x25x25cm. The outer size is of
no relevance as the image classi�cation only takes place in the inner section of the box.
Chipboard plates with a depth of 19mm and a white surface were chosen. After cutting
them to size, the plates were bolted together. The baseplate attaches with hinges to the
rest of the box as there needs to be an emptying mechanism.

3. Physical Structure 24

(a) Raw camera-box without cameras attached
to it.

(b) Camera-box with cameras and light at-
tached to it.

Figure 3.6: The way of an empty box to a camera-box.

Chapter 4

Part Classi�cation

Author: Christine Zeh

4.1 Recap

The measurement environment consists of the scale (see 2.2), the cameras (see 3.4), the
right lighting (see 3.2.2) and the basic software, discussed prior.The basic software implies
the provision of the weight by the scale and the preprocessing of the images (see 2.3). With
this environment set up, the focus lies on an adequate classi�cation method, which allow
a precise and quick computation of the pictures data.

4.2 Measurement Procedure

In Figure 4.1 the process, to receive an estimated part number, is illustrated. Starting the
next step with a key press is necessary to ensure the user had enough time to place the
Lego part.

Figure 4.1: The Process to receive an estimated part number. A more detailed description
to the modi�cation of the images can be found in section 2.3. How the data is processed is
going to be explained in this chapter.

4.3 Choosing the right approach

Depending on the weight and images from three angles, the part number of a Lego part
should be identi�ed. Di�erent approaches can lead to this goal. Two types were taken into
consideration.

25

4. Part Classi�cation 26

4.3.1 Feature Detection

The di�erence or resemblance between two images can be determined by comparing their
features. Features are sections or characteristics of an image which are distinguishable.
Features can be either global or local. Colour and texture are examples for global ones.
Interesting regions are described with local features like shape and orientation. For feature
detection the same results have to be obtained with di�erent perspectives, scaling or other
discrepancies.1 The features of the taken images are compared with an image library fea-
turing all detectable parts. A reduction of the number of parts to compare can be achieved
by checking the associated weight.

The error rate of this approach would be hard to minimise, because the shape of Lego pieces
is not diverse enough to achieve good results. Through the weight this problem could be
reduced, but the weight in the database is to inaccurate to delimit exact enough. With a
huge e�ort a fairly satisfactory solution could be reached. High computational demand can
still be an issue with weight ranges corresponding a lot of parts.

4.3.2 Learning Models

The concept of learning models is fairly easy. The program 'learns' from training data to
predict prospective inputs. Therefore the speci�cations of the parts are detected automat-
ically. The challenge of developing and implementing the right model to �t the task best
can be a hurdle in the short amount of time available. But with the right model the number
of wrong classi�ed parts could drop to a few percent. This can only be accomplished with
a lot of training data, but gathering this data is a rather big additional e�ort.

If more parts are needed learning models can be adapted for di�erent pieces by training the
model with the new data. The same implementation with feature detection can be more
complex, because unique features have to be de�ned. Another favourable point, regarding
learning models, is the continuous improvement through learning. With consideration of
the expandability and necessary work required, for the two approaches, the decision was
made for a learning model.

4.4 Machine Learning System

"A computer program is said to learn from experience with respect to some task and some
performance measure, if its performance on the tasks, as measured by the performance
measure, improves with experience2"

This means, the computer improves on a task, by identifying correlations and adapting
certain values using the training data.
Machine learning can complete di�erent tasks. For each of them a di�erent set-up is most
suitable.

Library

The biggest library to implement Machine Learning is Tensor�ow, developed by Google.3 It
o�ers basic functions to build and use neural networks. The library used for this project is

1M. Hassaballah, �Description and Matching�.
2Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .
3Tensor�ow .

4. Part Classi�cation 27

called TensorLayer.4 It is build on top of Tensor�ow and provides modules for reinforcement
and deep learning.

4.4.1 Di�erent Machine Learning Systems

Supervised Learning This is the most used type. The system learns with training data
already containing it's desired output, called the label.

Semi supervised Learning In the �rst step the system is trained without labels and
a few samples containing labels determine how to classify this data. This can be used to
name persons in a lot of pictures.

Unsupervised Learning Without the desired output accessible, the principal task of
this learning method is to �nd correlations and anomalies.

Reinforcement Learning An agent observes an environment and chooses actions, on
the basis of a policy. For every action it receives a reward or penalty. The policy gets
adapted to minimise penalties. The desired output, can only be achieved with multiple
actions in succession. If needed each can depend on prior actions, a possible scenario is a
game like chess.

Semi supervised is a possible way to train the model, considering no labelled data is
gathered. However, depending on someone placing the Lego parts, the data can get labelled
simultaneously. This allows the use of supervised training, which can speed up training
success.

O�ine or Online Learning With a big amount of training data necessary to achieve
satisfactory results, learning can take multiple days or weeks. By using online learning new
data can be integrated in the system without relearning the whole model.
The Lego sorting system uses online learning, but not automatically. The model can be
further trained with new data manually, if the correct identi�ed parts drop.

Instance- or Model-Based Learning Instance-based learning measures the resem-
blance of data. Based on the training data, model-based learning systems make predic-
tions. Both variants can be suitable for this project, but model-based learning seemed
more promising.

4.4.2 Fitting the task

Most model-based systems use a mathematical function that �ts the features of the input
best. Features are the attributes the model has to set in correlation to compute the right
output. Linear Regression is the simplest model to use on a task. It is in general a linear
function,

y(x) = θ0 + θ1 · x1 + θ2 · x2 + · · ·+ θn · xn (3)

whereby the values of the parameters θ get changed to reach the smallest mean error. For
more complex tasks a polynomial function can be used.

4TensorLayer .

4. Part Classi�cation 28

In 2006 Geo�rey Hinton introduced an, until this time, impossible approach.5 Using arti-
�cial neural networks solving more complex tasks is possible. These networks are used in
a technique called deep learning.

Deep Learning

An arti�cial neural network consists of interconnected neurons. Each neuron receives input
patterns and evaluates the output value with the aid of �ring rules (illustrated in �gure
4.2).6 Each input gets multiplied depending on its weight. Then all inputs get added up
with a bias value. The output value is computed with an activation function applied to
this value.

Figure 4.2: An arti�cial neuron receives input signals and evaluates the output value with
the aid of �ring rules

The most used activation function is the recti�ed linear unit (ReLU). The function receives
the input and if it's positive, outputs the value of the input. If the input is negative it is
set to zero. By forwarding a value of zero the weights can't be e�ective and the neuron
dies. A circumvention is called Leaky ReLu, if the result is negative the output will be
y = 0.01 ∗ x.
In 2015 a new activation function was introduced called exponential linear unit (ELU).7 It
can reduce training time and enhance performance of the classi�cation.

ELUα(x) =

{
α(exp(x)− 1) ifx < 0

x ifx > 0
(4)

Like the ReLU activation, ELU outputs the input value if its positive. If x is negative it
approaches the value of α, which is usually set to -1. This ensures the output is never zero.
A drawback is the higher computation expense because of the exponential function, but
this is compensated by the better convergence.

Neurons are arranged in layers, which are set in succession. The input layer receives raw
information. It is connected to hidden layers, which receive the computed data one after
another. Layers are called hidden if they are connected to neurons on both sides, that
means they are not directly accessible. Multiple hidden layers try to identify structures
and determine probabilities for the di�erent output options (see �gure 4.3).

5Hinton and Salakhutdinov, �Reducing the dimensionality of data with neural networks.�
6Neural Networks.
7Djork-Arne Clevert, Fast and accurate Deep Network Learning by Exponential Linear Units (ELUs).

4. Part Classi�cation 29

Figure 4.3: An arti�cial neural network consists of multiple layers. It tries to identify
structures and determine probabilities.

Neural networks can di�er in their structure, depending on their assigned task. To compute
a simple number a small network can be su�cient but if the classi�cation is computed on
the basis of an image the network can be fairly deep and wide. Neural networks for image
classi�cation or natural language processing are called Convolutional Neural Networks
(CNN).

4.4.3 Convolutional Neural Networks

According to a paper published by Kunihiko Fukushima,8 the visual understanding in a
human brain is done layer upon layer. Neurons of the lowest layer can only react to a small
�eld of the visual input. Neurons of the second layer can only react to a small �eld of
the reactions of the �rst layer. With each layer simple patterns can be combined to more
complex ones (see �gure 4.4).
This is adapted for CNNs using the convolutional layer. To obtain di�erent perspectives of
the receptive �eld, �lters, kernels with either the value zero or one, get multiplied to the
pixel. The output of all neurons using the same �lter is called a feature map. It highlights
the sections similar to the �lter. A convolutional layer can apply multiple �lters on its
input and therefore has multiple feature maps to detect structures.
To reduce the size and the needed computational demand, pooling layers are put between
the convolutional layer. This layer minimises the neurons by summarising a section. This
is achieved with an aggregate function applied on a kernel.
With multiple layers in succession, the network is capable of classifying even very simi-
lar objects correctly. A big competition named ILSVRC ImageNet challenge ranks di�er-
ent neural network architectures based on their error rates on di�cult image recognition
tasks9.10

4.4.4 Designing a test network

To speed up the development of the network and its components a test model is designed
and is going to be expanded later. It performs a simpler task by classifying on basis of

8Fukushima, �Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern

Recognition Una�ected by Shift in Position�.
9Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .

10ILSVRC ImageNet Challenge.

4. Part Classi�cation 30

Figure 4.4: An example of the visual understanding of a human brain. A neuron can only
react to a small �eld of visual inputs. The second layer can only react to a �eld of the �rst
layer, but multiple layers in succession can identify complex structures. The picture was
published in a paper written by Kunihiko Fukushima11

one perspective. Further on the testing takes only two parts with one image each into
consideration. (The two parts are illustrated in �gure 4.5). This allows the testing of more
possibilities.

As beginner in this �eld the use of an already tested architecture seemed more reasonable,
as designing a CNN architecture can be time-consuming and di�cult. Therefore di�erent
existing networks were tested to �nd the best suitable.
The �rst architecture was the LeNet-5. It was created in 1988 by Yann LeCun and is
the most known architecture for CNNs.12 It consists of three convolution layers with two
pooling layers. The network is e�cient in categorising small and simple images (32x32
pixels), but is too shallow to detect complex structures. The di�erences of the sample
parts could not be distinguished.
Last year's winner of the ILSVRC challenge is too complex to continue using it in the
expanded version, this was the reason why the next tested architecture was AlexNet. It is
the winner of the ILSVRC challenge in 2012. It consists of �ve convolutional layers and

11Fukushima, �Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern

Recognition Una�ected by Shift in Position�.
12Y. LeCun and Ha�ner, �Gradient-based learning applied to document recognition�.

4. Part Classi�cation 31

(a) (b)

Figure 4.5: Lego parts used to test the di�erent architectures.

only two pooling layer, which means it demands a lot of computational performance. But
regarding the similarity of the Lego parts, AlexNet was the only possibility. After 840
training images a 97.5% accuracy was achieved (plotted in �gure 4.6).13

0 200 400 600 800
Parts trained

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 4.6: Training improvement of AlexNet tested with two static images. The accuracy
is determined through 40 predictions.

Implementation

In table 4.1 the exact AlexNet architecture is described. The column maps declares the
feature maps for each layer. The size speci�es the amount of neurons and the kernel size is
the receptive �eld of a convolutional layer. A slight change is made for the implementation
in our project, by using the activation function ELU, instead of RELU.

13Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .

4. Part Classi�cation 32

Table 4.1: AlexNet Architecture14

Type Maps Size Kernel size Stride Padding Activation

Fully Connected - 1000 - - - Softmax
Fully Connected - 4096 - - - ReLU
Fully Connected - 4096 - - - ReLU
Convolution 256 13x13 3x3 1 same ReLU
Convolution 384 13x13 3x3 1 same ReLU
Convolution 384 13x13 3x3 1 same ReLU
Max Pooling 256 13x13 3x3 2 valid -
Convolution 256 27x27 5x5 1 same ReLU
Max Pooling 96 27x27 3x3 2 valid -

Convolution 96 55x55 11x11 4 same ReLU
Input 1 224x224 - - - -

Prede�ned functions from Tensorlayer are used to implement the network. For example a
convolutional layer can be created with the function tl.layers.Conv2dLayer and the param-
eters have to be set as stated in the table 4.1.

1 #Tensorlayer function to implement a Convolutional Layer

2 network = tl.layers.Conv2dLayer(

3 network, #prior layer

4 act = tf.nn.relu, #activation

5 shape = [3, 3, 256, 384] #kernel size, prior map size, current map size

6 strides=[1, 1, 1, 1],

7 padding='SAME',

8 name = 'cnn_layer') #name for identification

4.4.5 Optimiser

Optimiser are responsible for the improvement of the result. If the wrong optimiser is used
with a not suitable learning rate, the network can not succeed.
On the basis of a cost function an optimiser updates values to improve the output correct-
ness. These values include the weights of the connections between the neurons and their
biases. Calculating the probability error, the cost function has to be minimised to improve
the accuracy.
The most used cost function is the cross entropy function. The equation for a single neuron

C(y, a) = − 1

m

m∑
i=1

(y ∗ log(a)) (5)

outlines the functionality of a cost function. If the prediction a is near the correct output
y, (y ∗ log(a)) is equal to 1. If all computed outputs are nearly correct the cost function
will be 1.15

With the cross entropy cost function a vector can be computed containing the cost for each
class. The equation for one class, k, is stated below.

∆θkJ(θ) =
1

m

m∑
i=1

(p
(i)
k − y

(i)
k)x(i) (6)

14Alex Krizhevsky, ImageNet Classi�cation with Deep Convolutional Neural Networks.
15Nielsen, Neural Networks and Deep Learning .

4. Part Classi�cation 33

The possibility that the ith instance is in class k, is indicated by the probability p. y is the
wanted output and x is the instance. With these vectors the optimiser �nds a parameter
matrix θ to minimise the cost.
The learning rate η helps to police the updating of the value. By multiplying it with the
resulting value deterioration is diminished, this implies the value needs to be be smaller
than one.
At the beginning a gradient descent optimiser was used, but led to no noticeable im-
provement of the accuracy. In the following sections the di�erent optimiser tested and it's
problems are outlined.

Gradient Descent Optimiser

The most popular optimiser is gradient descent,

θ = θ − η ·∆θJ(θ) (7)

which updates the parameters by subtracting the result of the cost function, reduced by
the learning rate. It is di�cult to achieve a good convergence with this optimiser. Using
a too small learning rate, improvements will take too long and with a too large learning
rate there's a possibility the optimum will never be reached. Also the optimiser can't react
to characteristics of the data set. Applying gradient descend to an neural network, other
problems can be local minima and saddle points.16

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
1.5

1.0
0.50.00.51.01.5

-20.00
-16.67
-13.33
-10.00
-6.67
-3.33
0.00
3.33
6.67
10.00

(a)

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
1.5

1.0
0.50.00.51.01.5

-1.00
-0.78
-0.56
-0.35
-0.13
0.09
0.31
0.52
0.74
0.96

(b)

Figure 4.7: Gradient descent can get stuck in local minima or saddle points

Momentum Optimisation

The enhancement of gradient descent, momentum optimisation, can pass over local optima

m← β ·m+ η ·∆θJ(θ)

θ ← θ −m
(8)

by adding the prior momentum m to the local gradient, this simulates acceleration. Al-
though due to this acceleration, oscillating at the global optimum can happen.17

16Ruder, �An overview of gradient descent optimization algorithms�.
17Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .

4. Part Classi�cation 34

RMSProp

The RMSProp algorithm

s← β · s+ (1− β) ·∆θJ(θ)⊗∆θJ(θ)

θ ← θ − η ·∆θJ(θ)�
√
s+ ε

(9)

reduces the vector along the steepest dimension to correct the direction towards the global
optimum. First the squared gradients get accumulated, where the symbol ⊗ represents
the element-wise multiplication. This sum is than added to gradients of the most recent
iterations, achieved by exponential decay. The resulting s is then used to reduce the scaling
vector by element-wise division, represented by �. To avoid a division through zero ε,
usually a number like 10−10, is added. With this calculation the learning rate decays over
time and more intense if the dimension is steep.18

Before Adam Optimiser was developed, it was the most used optimiser.

Adam Optimiser

In 2015 a paper was published, introducing a newly invented optimiser called Adam.19

Optimisation with Adam is a combination of the Momentum Optimiser and RMSProp.

m← β1 ·m+ (1− β1) ·∆θJ(θ)

s← β2 · s+ (1− β2) ·∆θJ(θ)⊗∆θJ(θ)

m← m

1− βT1
s← s

1− βT2
θ ← θ − η ·m�

√
s+ ε

(10)

The second and �fth step keeps the track to the global optimum. The �rst step calculates
the momentum. In step 3 and 4 faster acceleration at the beginning is achieved by increasing
m and s, where T is the iteration number. At the moment the Adam algorithm is the fastest
optimiser and used for the project.20

4.4.6 Prevent over�tting

A neural network is trained on training data. It's accuracy is tested on data never seen in
the period of training. The prevention of over�tting means to prevent poor adaptability
and therefore bad accuracy with the test data. This achieved through di�erent techniques,
which have been implemented.

Early stopping

The easiest one to implement is early stopping. Periodical the accuracy of the network is
measured and the best state of the network is saved. If the accuracy drops over time, the
saved state is loaded.

18Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .
19Kingma and Ba, �Adam: A Method for Stochastic Optimization�.
20Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow .

4. Part Classi�cation 35

Dropout

While the network is trained, every step some neurons are dropped, this means they get
ignored, with a 50 percent chance. This implies that a neuron can't rely on its predecessor
and its successor and therefore needs to generalise more and be less sensitive if the input
changes slightly. A bene�t of one to two percent accuracy is possible with this method.

4.5 Expanding the Network

After the components to be used are determined the network is expanded to perform the
complete task.
To classify with the aid of all images and the weight, four small networks are concatenated.
The small networks to compute the images have the structure of the test model architecture.
The concatenation of the networks is done horizontal. This means the output of each neuron
of the networks is transmitted to one layer. To guarantee every value is regarded the width
of the layer is as wide as all four networks combined.

4.5.1 Testing the correct operation

At this point the correct operation needs to be tested. Over the course of one week the
network was trained with 375 parts per hand. With the experience gained in the process
two realisations were obtained.

As shown illustration 4.8 the improvement of the accuracy was hardly present. With 50
parts tested to achieve the accuracy, the improvement consisted of two parts instead of one
part correctly classi�ed.

0 50 100 150 200 250 300 350
Parts trained

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ac
cu

ra
cy

Figure 4.8: Accuracy improvement over time

Although the correctly classi�ed parts were rare, the test run was a success. The network is
able to recognise general structures of the parts, this can be concluded through the identi-
�cation of parts as di�erent ones but with similar structure. Two bricks with it's classi�ed
counterpart can be seen in �gure 4.9. This proofs the ability of the enhanced network layer
architecture to still identify complex patterns, irrespective of the concatenation.

4. Part Classi�cation 36

(a) (b)

(c) (d)

Figure 4.9: The neural network classi�es part (a) as part (b) and (c) as (d). This proofs
the ability to identify general structures.

To increase the correct predictions more training data is needed, nevertheless. With 200
inputs the accuracy of 8% has not improved therefore an estimated amount of 400 units
of training data is set for an improvement of 4%. For an accuracy of 80% this would
result to 8000 inputs. Although with higher accuracy training gets slower. Therefore an
approximately training data in the range of 10000 - 15000 is needed. Training the network,
to achieve a satisfying rate of correct classi�ed parts per hand would be a time consuming
task. To accelerate the learning process another possibility has to be found.

4.5.2 Wrong Assumptions

In the beginning of designing the machine learning system an assumption was made, but
never veri�ed. It was assumed that the concatenation will align the individual results of
the networks.
Testing the correct operation it was thought wrong that the network will improve over
time. With virtual training (discussed in 4.6.1 on page 38) the mistake was realised. The
individual sections distract each other and a maximal accuracy of 15% can't be exceeded.
The progress during training is illustrated in �gure 4.10

4.5.3 Correction of the Mistake

To correct the made mistake a new classi�cation process has to be worked out. The error
was the concatenation, therefore it has to me avoided. The circumvention was the returning
to the test model.
Each image is classi�ed by the CNN network. If two of the three classi�cations are equal
the part is considered the corresponding label. This procedure also implies advantages. As
all images pass through the same network, three times as much training data is provided.
The reason is, that the parts can be situated in any position, therefore some perspectives
can be recorded from multiple cameras. With this amendment, the weight will be utilised
to review the identi�cation of the network only.
To test this approach three parts with training data in di�erent perspectives is used.
Reaching over 90% accuracy with 2000 units of training data, the test was a success. The
training progress can be spotted in �gure 4.11 later in this chapter.

4. Part Classi�cation 37

0 1000 2000 3000 4000 5000
Parts trained

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ac
cu

ra
cy

Figure 4.10: Accuracy improvement over time of the enhanced model consisting of four
concatenated small networks.

4.5.4 Number of outputs

Deciding how many parts to classify simultaneously is not as simple as it seems in the �rst
moment. The question is more complex because of the variables associated with the net-
work. During training it became clear that the learning rate has to be adapted, depending
on the number of outputs.
This is because the learning rate slows down the adaptation of the weights. If it's to high
the weights cannot be adjusted accurately enough. This leads to the problem that the
network skips some outputs, therefore never classi�es them correctly.

Trying to solve this problem by adjusting the learning rate more precisely or dropping the
learning rate while training were not successful. In �gure 4.11 the achieved accuracies for
di�erent numbers of outputs are illustrated. Each testing was executed with a learning rate
of 0.0001. The set up of the test runs is declared later in section 4.6.2 on page 39
The dropping in accuracy if the number of outputs is greater than 5 can clearly be seen.
This leads to the conclusion to set the upper boundary to �ve parts. With further studies
the boundary can be raised later.
In the graph it can be seen however that learning pace decreases with the number of
outputs. If the learning rate has to be decreased also, the speed can drop further. It is
to be presumed that the training time will increase exponential with the number of parts
classi�ed simultaneously.
With this in mind using �ve parts can lead to better results even if more would be possible.
The number of training data and time needed to increase to a su�cient accuracy would
be too high.

4.6 The learning process

The neural network can be used with three di�erent programs. The �rst one, to train the
network the general knowledge of the structures on the basis of virtual models. This step
is not yet developed completely and can be omitted. The second program is needed to
optimise the output on real data and the last one for the automatic identi�cation of Lego

4. Part Classi�cation 38

0 2000 4000 6000 8000 10000 12000 14000
training data

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
 o

n
tra

in
in

g
da

ta

3 parts
4 parts
5 parts
6 parts
8 parts

Figure 4.11: The training process while training illustrated with di�erent numbers of parts
with 360 units of virtual training data for each part. The accuracy was tested on 50 units
of the training data, therefore needs to be tempered with caution

parts.

4.6.1 Virtual generation of training data

To train the network su�ciently, a large amount of training data is needed. Using 3D-
Models of LEGO parts, an almost realistic record should be generated. LDView is a pro-
gram to generate pictures of LEGO designs with realistic lighting and structure.21

Figure 4.12: LDView is a program to display LEGO 3D-Models

It provides a command line tool to capture pictures of the model. With a script each time
three images from the parts are recorded, positioned as in the measurement environment.

21LDView .

4. Part Classi�cation 39

The script captures image pairs in each of the 360 degrees. In �gure 4.13 a direct comparison
between training data generated in the measurement environment and with LDView is
illustrated.

(a) (b) (c)

(d) (e) (f)

Figure 4.13: The comparison of training data generated in the measurement environment
(a), (b), (c) and virtually with LDView (d), (e), (f). The parts are coloured to achieve better
perceptibility.

Another script uses the above mentioned capture script to generate these images of the
part associated with the submitted part number. In the last step a python program joins
the images with the associated labels. The images also get preprocessed to improve the
learning performance. The resulting data is stored in arrays to transfer it to the model
more easily.
With this technique a su�cient amount of training data can be generated. This becomes
possible by creating a 360 degree view in training data. With a model possible of detecting
�ve di�erent parts, training data in the size of 1800 units is generated.

4.6.2 Learning of the general structures

With enough training data generated the network is ready to be trained. In this step the
weight is not taken into account.
The expanded network architecture tests were executed with this program. The accuracy
was tested on training data, therefore it is higher as with data never seen before. Although
because all perspectives should be covered, this was the only way.

Currently the virtual generated training data is not diverse enough to use the trained
network to identify parts in the real set-up. In �gure 4.14 the progress of training a network
with virtual data and testing it's accuracy with real test data is illustrated. It can be seen
that the accuracy tested with real data remains parallel to the accuracy tested with virtual

4. Part Classi�cation 40

data. This can lead to the conclusion that by improving the generation of training data,
the real training can be minimised. Nevertheless, to accomplish better results the existing
network has to be further trained.

0 1000 2000 3000 4000 5000 6000 7000
training data

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
 o

n
tra

in
in

g
da

ta
Test environment
Virtual Data

Figure 4.14: The accuracy while the network is trained on virtually generated training
data (orange) and the accuracy of this network tested with the measurement environment
(blue)

4.6.3 Learning in the measurement environment

As the virtual generation is not developed well enough, the network can be trained in the
measurement environment only. On basis of the gained data around 13000 parts need to be
scanned to reach an accuracy over 90%. During testing with the measurement environment
an average time of one minute per part has emerged. Summed up to the estimated parts
a total time of 216 hours would be necessary.

4.6.4 Predicting the part number

After having the network trained to a su�cient accuracy the network can classify parts
with this program without updating the parameters of the network further. This means
no user has to check or clarify the output. If the accuracy occurs to not be satisfying, the
network can be further trained with the second step.
If parts are encountered with three di�erent predictions the part is declared as not asso-
ciated. To decrease the probability of sorting bricks wrong, the prediction is checked for
plausibility by comparing the measured weight with the weight from the database. If it is
outside the range of 0.5 grams the part is also declared as not associated.

Chapter 5

User Interface

Author: Simon Babovic

To improve usability and regulation of the part classi�er, the idea was to create an user
interface. A plan had to be worked out on how to pack the complex process of image
classi�cation into a simple, human readable form. The goals of the user interface are to
visualise, what the part classi�er does, and to provide an easy way of communication
between the software and the user, when human input is needed. From planning phase,
three core features emerged.

� A live preview for production, which visualises the process of image classi�cation.

� An interface to control the process of reinforcement learning.

� An interface for experimental virtual learning.

The user also shuold be able to combine virtual learning and reinforcement learning for
experimental purposes. Because of this, and the fact that the production software uses
the data generated from virtual and reinforcement learning, there needs to exist a shared
ressource. This ressource is the neural network itself. A connection had to be made for the
features to use this shared ressource. So a fourth feature arose: The administration of

neural networks.

After the features bacame clear, an implentation variant for the user interface had to be
chosen. As a web interface quali�es best for visualising data, due to the strict distinction
between data and design, which makes it easy to implement, this option was chosen. There
is just one problem. The communication of a web application and a python process. The
client side of a web interface is implemented in JavaScript. The only technology supported
for real time communication is the Websocket protocol, but python is best to communicate
with TCP sockets. The easiest solution would be to implement the Websocket protocol
beside the part classi�er to allow communication. This is considered as very heavy-weight,
so an attempt was started to �nd another solution.

5.1 The Bridge

The idea was, to implement a server, which is capable of converting Websocket messages to
TCP streams. Over this server it would be easy for two processes, of which one implements
the Websocket Protocol and the other one TCP sockets, to communicate. This is because
of the server creating an abstraction layer. This abstraction denotes itself through two
endpoints. One on which the TCP client connects and the other one, where the Websocket

41

5. User Interface 42

client connects. JSON got chosen as message format, as it is widely used in the web sector
and almost every programming language has a way of supporting it.

5.1.1 Libraries used to establish communication

Node.js

Node.js is a runtime-environment, which allows to run javaScript on the server side of the
application. It's architecture is event-driven and it provides a lot of di�erent modules for
every purpose, like Socket.IO or the Net-module, which is used to establish tcp connections
with Node.js. It's latest stable version is 9.5.0 from Jannuary 31st 2018.

WebSockets

WebSocket is a protocol to provide a full-duplex communication over a TCP connection.
It works on HTTP ports and unlike normal TCP streams, which process raw bytes, the
WebSocket protocol provides a concept of messages. As JavaScript is limited to Websockets
and is not able to open TCP streams, a server had to be implemented to bridge WebSocket
messages to a set of bytes (text) for the TCP stream. For the client side of the user interface,
Socket.IO was used as WebSocket library.

Socket.IO

Socket.IO real-time web application library. It consists of two parts. The client part which
runs in the browser and the server part which is a Node.js library. It uses the Websocket
protocol. Socket.IO provides an API to easily build websocket appllications. It's latest
stable release is 2.0.3 from June 13th 2017.

5.1.2 Message Types

To ensure a well working communication, a few message types got de�ned. They are
grouped in two sets.

� Emitting Messages are messages which have their origin at the user interface. They
are sent to the server, which then forwards the message to the part classi�er.

� Receiving Messages are the opposite of emitting messages. They come from the
part classi�er and are sended to the user interface. They are most of the time re-
sponses to emitting messages.

Every message can hold JSON data if it needs to. An example message looks like this:

1 {

2 "message_type": "bridge",

3 "type": "stop"

4 "data": { "force": "false" }

5 }

This message would be an Emitting Message. The value of the attribute message_type
indicates to the server, that the message should be forwarded to the part classi�er. This
attribute is the only one which gets read by the server. The rest of the attributes indicate
to the part classi�er to gently shut down and to save before exit. For emitting messages,
this JSON object gets stringi�ed and sended to the tcp socket. For receiving messages, this
JSON string gets parsed and veri�ed. Once validated, a new websocket message with given
name and data will be sent to the user interface.

5. User Interface 43

Following message types got de�ned for the communication between the two processes. To
distinguish the message type in JSON, the name of the message is put in the type attribute
as shown above.

Emitting Messages

Name Description Response

startup starts the part classi�er and
loads a neuronal network

startup success or startup
fail

stop saves the current neuronal
net and stops the classi�er

stop success or stop fail

save saves the current neuronal
net

save success or save fail

learning response response to learning request -

Receiving Messages

Name Description Response

learning request made a prediction and need
human response

learning response

startup success con�rms startup complete -
startup fail indicates error on startup -
stop success con�rms shutdown com-

plete
-

save success indicates save complete -
save fail indicates error on save -

While implementing the bridge, it soon became clear, that the bridge is not everything
needed for a well working user interface. On both sides of the communication is a need for
information from the database, so the idea of a database API arose. For the TCP side, a
new message type named database got de�ned, which allows the part classi�er to make
database queries over the TCP socket.

5.2 Database API

The idea was to create an API over http, which abstracts the access to the database. As
http provides di�erent methods, it was a matter of interest to implement the functions
with their respective http methods.

� GET for getting a ressource

� POST for creating a ressource

� DELETE for deleting a ressource

5.2.1 Used libraries to implement http methods

Node Express

Express is a module of NodeJS (See 5.1.1). It provides functions for implementing a http
server. With this it is possible to create custom routes. For example can the route /networks
point to the �le /html/nets.html. Also, express allows to de�ne route parameters, so a route
like /networks/1 can for example point to /html/networks?id=1. This is not limited to �les,
meaning the response does not have to be HTML. It also is possible to send plain text or
JSON. This makes the express module perfect for implementing a database API.

5. User Interface 44

Node mysql

NodeJS (see 5.1.1) provides a module named mysql, which is capable of establishing a
connection to a database and running queries on it. This library was used, because it is
very easy to run database queries due to the event driven process of JavaScript.

5.2.2 Mode of operation

The goual was to implement the API invocations as intuitive as possible, so for example
GET /network/1 to get information about the network with the id 1, or DELETE /net-
work/1 to delete the network with the id 1. The only problem is, that the express server
also de�nes the routes for the frontend (see 5.4), so the database api routes had to be
encapsulated from the frontend routes. This is done by pre�xing all database API routes.
The example invocation from above now looks like this: GET /db_api/network/1.

5.3 Architecture

When combining the bridge and the database application programming interface, it results
in the following communication architecture (see 5.1).

5.3.1 States

The server can have di�erent states which determine if the server is waiting for a response
or not. More than one state can be active at the same time. These states are as follows
(also see 5.2):

� Running

The part classi�er is running.

� Save requested

The user requested to save the neuronal net and the server is waiting for con�rmation.

� Startup requested

The user requested to start the part classi�er and the server is waiting for con�rma-
tion.

� Stop requested

The user requested a shutdown of the part classi�er and the server is waiting for
con�rmation.

� Waiting for learning response

The part classi�er has made a prediction and waits for a human interaction.

These states can be visualised as deterministic �nite state machine (see 5.2).

5.4 Frontend

The frontend is written in HTML5, CSS3 and javaScript. As the interface is installed
locally and will never be listed on a search engine, it does not need to load super fast.
Therefore, without compunction, third-party libraries, such as Bootstrap and jQuery were
used to most of all improve code readability. To save time, the dashboard template from
Bootstrap was copied and pared down to the bone.

5. User Interface 45

Database API

Bridge

Web-
socket
Server

TCP
Socket
Server

 Database

 User Interface
 Frontend

AJAX

 Part Classifier

Node Express Server

Figure 5.1: This graphic depicts the architecture of the server, its communication interfaces
and the two processes using them. The architecture consists of two parts: the database API,
which is invokable through http reqests for the web app and through TCP messages for the
part classi�er, and the bridge, which forwards Websocket messages as strings through TCP
sockets and vice versa.

5.4.1 Used Libraries to create a good user experience

Bootstrap

Bootstrap is a framework for web-development which aims to make the process of devel-
oping a frontend easier and faster. It provides design templates for almost every frontend
component, such as buttons, forms, tables, etc. It also provides JavaScript plugins for more
functionality. It was developed by Twitter as open source project on GitHub. It's �rst re-
lease was in August 2011 and in June 2014 it was the number one project on GitHub. It's
current stable release is 4.0.0 from Jannuary 18th 2018. In this project the advantages of
bootstrap are used to build up a frontend fast and easy.

5. User Interface 46

Stopped

 Startup

requested

Running

 Save requested

 Stop

requested

Waiting

for learning
response

Figure 5.2: This graphic shows the states the express server can take and how they change.
The stopped state is both start and �nal state. When the start is requested and an error
occurs, the machine goes back to stopped, otherwise it changes to running. The waiting for

learning response state is taken when human interaction is needed. When a stop is requested,
there will always be a save request before shutting down, except the shutdown is forced. In
this case SIGKILL is sended to the process and the machine immediatly changes to stopped.

jQuery

jQuery is a pure JavaScript library to improve usability and code readability of JavaScript.
It provides functions which make it very easy to select and manipulate HTML elements
in very few lines of code. For element selection, it uses the same syntax as CSS, which
especialy makes the code much simpler to read. It was developed by John Resig and it's
�rst release was in August 2006. It's latest stable release is 3.3.1 from Jannuary 20th 2018.

5.4.2 User Interface Client

The user interface client provides it's core functionalities, such as administrating, training
and monitoring of the part classi�er, in four main pages.

1. Live Preview

2. Reinforcement Learning

3. Virtual Learning

4. Networks

These pages are integrated in one main frame for both design and functionality purposes.
The design of the main frame is on all pages the same, so it only needs to be loaded once.

5. User Interface 47

The connection with the server is implemented in this main frame, thereby messages do
not get lost if the page needed is not loaded at the time the message arrives.

5.4.3 Networks

The networks page is dealt with �rst, because this is the page where the administration
of the networks happens (see 5.3) and every other page uses such a network. The main
function of this page is to create networks. A network is created by de�ning a name for
it and by adding Lego parts to it. In addition it is possible to view and delete networks
created in the past by clicking on the name of it in the top table. Also there is a feature to
virtualise a network. After a network got virtualised, it can be used with virtual learning.
When clicking the button, the server creates all �les necessary for the virtual learinging
process (see 4.6.1).

One major problem came up before implementing the page, which had to be solved �rst:
How can the about 10000 parts in the database be visualised to the user and what is the
easiest way to e�ectively search through a dataset this large?

Figure 5.3: Graphical network administration page

The search function

The idea was to show 20 parts from the database in a table, while all other parts are loaded
in the background. It then is possible to page through sets of 20 parts. Additionaly the
idea of a live search function, which is capable of searching through all parts by name and
partnumber, arose. A search algorithm would be used everytime the user types a character
into the search bar. This resulted in unresponsive behaviour, due to the huge amount of
unsorted data which has to be searched through. The best solution for this problem was, to
wait until the user is ready to look at the search results, resp. has �nished typing or stops
typing to look through the interim results. An interval of 600 millisecounds was chosen, as
this is the time the backspace key needs to initiate channeling.

5. User Interface 48

5.4.4 Live Preview

The live preview is the interface for the production process, in which parts get classi�ed.
The only options for controlling it are starting and stopping. Before starting the process,
a network, created in the networks administration page and trained in one of the learning
pages, has to be selected. After start, the classi�er sends result messages periodically to the
interface. The main goal of this page was to provide an easy way for the user to monitor
the part classi�cation process. This is achieved by a big container on the top of the page
showing all results the classi�er got from classifying one part (see 5.4). The page also
provides a table of a short history of identi�ed parts.

Figure 5.4: Production live preview page

The main problem while implementing this page was, that the mechanical structure has not
been developed far enough to automatise the process of delivering a part to the machine.
As the live preview page should require as little human input as possible, a program
was written to simulate periodical identi�cation of parts by sending dummy results in an
interval of �ve secounds.

The only feature not implemented is the image view of the classi�ed part. As this page is
experimental and only usable after the mechanical work has been done, the image of the
lego part in �gure 5.4 only is a dummy picture. Later on, it should show the photos made
from the cameras to provide a better overview of which part has been identi�ed.

5.4.5 Reinforcement Learning

The reinforcement learning page is the main page of the user interface. Its goal is to provide
an easy way for the user to train a network by hand. This process is executed in six steps.

1. Start the process after a trained network has been selected and wait for the program
to start

2. Place a Lego part into the machine and tell the process that the machine is ready by
clicking the Ready-button (see 5.5)

3. Wait for the classi�er until it makes a prediction

5. User Interface 49

4. Tell the classi�er the correct part number of the part in the machine

5. Repeat from step 2

6. Save the network and stop the process by clicking the Stop-button

Figure 5.5: Reinforcement learning interface

The main problem again was how to visualise the whole process to the user. The �rst idea
was to tell the classi�er the correct answer by entering the number of the part sitting in
the machine. But this idea got drafted because part numbers are very long and hard to
remember. The other idea was to instead showing the possible part numbers in a table,
hieghligthing the guess of the part classi�er and allow the user with a click on the part
number to pick the correct answer.

The Log container

The log container serves as information display. It is connected with the standard output
stream of the classi�er and designed to look like a shell. In this container, information, like
when the process has started or when it is waiting for human input, gets displayed. As the
complete project output is a prototype, the log container also is connected to the standard
error stream of the classi�er, so debugging for the developers gets easier.

5.4.6 Virtual Learning

The virtual learning interface was created for experimental purposes, as the virtual learning
process is experimental too (see 4.6). It provides a larger log container than the reinforce-
ment learning interface (for the purpose of the log container see 5.4.5).

Before starting the virtual learning process, again a network has to be selected. These
networks are limited to virtualised networks (see 5.4.3). This means it is only possible to
train the network virtually, when virtual training data has been created.

5. User Interface 50

Figure 5.6: Virtual learning interface

5.5 Installation

As the project has many dependencies to existing software and libraries, the idea of creating
an install script arose. For this, three �les were created:

� package.json

This �le stores the information about required NodeJS modules and their version
(For more information about NodeJS, see 5.1.1). It allows the user to automatically
install all requirements by running the command npm install.

� requirements.txt

This �le stores the information about required python packages and libraries. With
the command pip install -r requirements.txt all packages required for the image clas-
si�cation process get installed automatically.

� install.sh

The goal of this �le is to automate the installation process with no need of human
input. At �rst it installs the mysql server and imports the parts database along with
the tables needed by the user interface. It combines the two commands mentioned
above, right after NodeJS, Python, NPM and PIP got installed. In the last step
LDView gets installed and all �les necessary for the experimental virtual learning
method get created.

5.5.1 Preconditions

The install script presupposes to run on a fresh Debian 8 machine because of two reasons.
Firstly, it uses the apt-package-manager and secondly, to successfully install the mysql
server without human input, debconf commands are used by the script, which are only
available on Debian operating systems.

Chapter 6

Conclusion

Author: Simon Babovic

The Lego Recognition Tool project provides a �rm basis for identifying Lego bricks, while
using only low budged gadgets in an image classi�cation process. The project was built up
from scratch completely. The task was to develop a machine capable of identifying Lego
pieces, while having a budget for materials and gadgets of 1000e. This project is intended
to be the �rst step to an autonomous Lego-sorting machine. At �rst, there had to be
thought of ways to identify one piece, then solutions to many problems had to be worked
out.

6.1 Recap

In the beginning, ways to ful�l the task had to be found. This was done by doing research
on what already is available in the Lego sector. One of the outcomes of this research was
the Bricklink database, which stores information of about 40000 Lego parts. It also includes
information about the weight of each piece in the database, which led to the idea of using
a scale as an easy way of distinguishing between groups of parts.

An analysis of the information in the database resulted in an outcome, which states, that
by measuring the weight of a part, 90% of all parts can be excluded in a prediction in the
worst case scenario. In the best case scenario, a part can be identi�ed by its weight only.
As a precision scale was bought and tested, the �rst problems arose. It turned out, that the
weight information in the database is not precise, instead, the values are rounded up. Also,
as the database is made from a community, the deviation of weights is variable, meaning
it is exclusive for single parts. Additionally the abrasion of secondhand Lego pieces have
not been considered. So it is possible that an older part has less weight than a newer one.
However, the approach with the scale was not a complete waste of time, as it still plays a
role in the project later on.

Because of the problems with the weights of Lego parts, the main focus of the project got
shifted to identi�cation with cameras. This method consists of two important parts: The
software and the mechanical structure, which got, due to complexity, partly replaced with
an user interface. To accelerate the process of development, it got parallelised. That means,
that one member of the team worked on the software, and the other one worked on the
mechanical setup, and later on the user interface.

51

6. Conclusion 52

6.1.1 Image classi�cation software

The �rst idea was to create a neural network, which is capable of learning di�erences
between shapes of all existing lego pieces. This turned out very complex and not achievable,
due to lack of time and budget, as such a complex neural network requires huge computing
power to accomplish training. Furthermore, there is absolutely no training data available,
so it would have had to be created from scratch. The huge size of a dataset required to
train such a neural network would widely go beyond the scope of this project, so other
solutions had to be worked out.

One of these solutions was, to create a small straightforward neural network, which is
capable of distinguishing between a maximum of �ve parts. This size turned out to work
with available ressources, although �ve out of 40000 parts are a huge limitation. As it
became clear, that even the amount of training data required for a small neural network
like this is still huge, the focus shifted to both proving the neural network is adaptive, and
reducing the amount of required training data.

The learning ability of the network got proven by a method called virtual learning. This
method was developed to automate the process of creating training data by making pictures
virtually from 3D-Objects and was originally meant to replace the reinforcement learning
method, where human input is needed. To be able to detect errors in predictions, the scale
is now used. It checks if the predicted part is in a range of its weight in the database.
The amount of required training data got reduced by preprocessing the images of the
Lego bricks. This means, that all irellevant information like background and color gets
irradicated from the picture. This also implicated some hardware requirements.

6.1.2 Mechanical setup

The goal of the mechanical setup was primarily to create a setting, where image prepro-
cessing is more easily done. This was accomplished by creating a camera box, which is
homogeneous in color on the inside, so the background can be easily distinguished from
the foreground. Three cameras were chosen to take pictures from the Lego part in the box
from di�erent angles, to create a good all-round view on the piece.

Also one goal was to implement a mechanical system, which is capable of bringing single
Lego pieces from an unsorted box to the camera box, and from the camera box to a sorted
box. While constructing the camera box, the complexity of constructing such a mechanism
became clearer, so this goal got considered as unachievable for IT students, especially in
the time of a school year. Furthermore, it makes no sense for an IT diploma thesis to focus
on mechanical components, so the goal of creating a transporting system has been replaced
with another one. As the whole project is experimental and as the part classi�cation process
is hardly imaginable, the idea of creating an user interface arose.

6.1.3 User interface

The user interface was created to visualise the process of part classi�cation to the user and
to provide administration options of a learning process. As the idea was to implement the
user interface as a web app, the biggest problem was the communication between it, the
part classi�cation process and the database. Because JavaScript is limited to Websockets,
and implementing the Websocket protocol in the part classi�er is considered very heavy-
weight, a NodeJS server was implemented to bridge Websocket messages from the user

6. Conclusion 53

interface to TCP streams for the part classi�er and vice versa. It also provides a database
API which is reachable through TCP sockets, so the part classi�er has not to deal with
http requests.

The frontend is designed to be self-explaining and easy to understand, while at the same
time to be suitable for further development of the part classi�er by providing debugging
options.

6.1.4 Summary

In summary, it can be stated that both the huge variety in Lego parts and the complexity of
the mechanical setup got underestimated. However, it was still possible to get good results
with little budget, which make the project, as it is, a �rm basis for further development.

6.2 Outlook

As the project could not be completed due to lack of time and budget, there is still much to
do to bring the project to success. There is need for further development in three categories.

� Mechanical structure

The sector, where the most development work has still to be done, is the mechanical
one. Ways to bring a Lego part to classi�cation and away from it have to be worked
out.

� Software improvement

In future development, the software of the part classi�er has to be adapted to bring
the machine to production.

� System

The key of this project is to keep the budget required for such a machine low, so
solutions have to be brought up to ensure this goal will be achieved too.

6.2.1 Mechanical concepts

Here some concepts on how a mechanical structure could look like get introduced.

Bringing the Lego part to classi�cation

To bring a piece of Lego to the classi�cation setting, a good way would be to lead them
over conveyors. But as the parts hugely di�er in size, this is not the only thing to do.
A good solution would be, to pre-sort Lego bricks by size. This could be achieved with a
vibration sieve. It could lead very tiny and very big parts to di�erent classi�cation settings,
which are �tted best for their size. Concepts on how such a setting could look like are not
available yet. Furthermore would it make sense to use multiple conveyor belts, which run
beside one another, to split up groups of Lego pieces, so they can get to the classi�cation
setting as single piece.

Bringing the Lego part to the box

One concept to bring the a piece of Lego from classi�cation to the correct box, is to let
gravity handle the transportation. For this, the classi�cation process would take place at
the very top of the machine. A construction below would handle the navigation to the
correct box. The concept is built on hatches, which open the path to the box, after a Lego
piece has been identi�ed. For more information, see 6.1.

6. Conclusion 54

Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8

Lego part comes from here

Figure 6.1: This �gure is a draft of a transporting system from the image classi�cation
setting, to the boxes. The idea is, that after classi�cation, hatches open the way to the correct
box. Then the Lego part gets released and falls through the hatches into the box. When
bringing this concept from two dimensions to three dimension it gets even more e�cient.

6.2.2 Software improvement

To improve usability of the classi�cation process, the virtual learning method is key, as
this method can bring the learning and the classi�cation process to production. There will
have to be found solutions to the problems this method still has. One of this problems is,
that the photos generated from the software are too clean, so pictures of an actual part are
too di�erent from the generated ones. This could be solved, either by using better cameras
and a cleaner setting, or by adding deliberate noise to the generated pictures.
Another thing to improve would be the neural network itself. As the virtual learning method
could eradicate the e�ort of creating training data for the neural network, a much bigger
one would be able to be created. This indeed would raise the required computing power,
but for this problem a solution had been worked out too.

6. Conclusion 55

6.2.3 System improvement

The problem is, that when using a bigger neural network, more computing power is needed
to train it. More computing power can get expensive, and if using more than one machine,
this would miss the goal of the project to run on low budget. One suggestion is, to create
a central learning unit, which handles the training of neural networks. This unit would be
the most expensive in the complete project, but the classi�cation units would not need to
have such a computing power. They might also run on a RaspberryPi, which comes at a
cost of about 40e. So instead of using the same system to train and to classify parts, the
training part of the process should be transfered to another location (See 6.2).

Central learning
 unit

Classification unit

Lego sorting
 machine

Classification unit Classification unit

Conveyor system

Lego sorting
 machine

Lego sorting
 machine

Figure 6.2: When using more than one machine, which all can distinguish between di�erent
Lego parts, it would make sense to transfer the learning process away from the classifaction
process. This is because learning requires more computing power, than classifying does. So
while the machines work together to identify a Lego part through image classi�cation and,
for example a conveyor system, the trained nets are stored in the central learning unit. The
classi�cation units can load the neural networks to use them in production.

Bibliography

Alex Krizhevsky Ilya Sutskever, Geo�rey E. Hinton. ImageNet Classi�cation with Deep
Convolutional Neural Networks. Tech. rep. 2012, p. 1097.

Angle of View. https://en.wikipedia.org/wiki/Angle_of_view. Oct. 2017.
Brickfetish. http://brickfetish.com/catalogs/dk/dk_1955.html. Feb. 2018.
Bricklink. https://www.bricklink.com/. Mar. 2018.
Bricklink Naming Scheme. https://www.bricklink.com/help.asp?helpID=168. Sept. 2017.
Burger, Wilhelm and Mark J. Burge. Principles of Digital Image Processing: Advanced

Methods. Springer, 2013. isbn: 978-1848829183.
Devi, H. K. Anasuya. �Thresholding: A Pixel-Level Image Processing Methodology Prepro-

cessing Technique for an OCR System for the Brahmi Script�. In: Ancient Asia (2006).
DOI: http://doi.org/10.5334/aa.06113, 161�165.

Djork-Arne Clevert Thomas Unterthiner, Sepp Hochreiter. Fast and accurate Deep Network
Learning by Exponential Linear Units (ELUs). Tech. rep. Johannes Kepler University,
Linz, Austria, Feb. 2016.

Fukushima, Kunihiko. �Neocognitron: A Self-organizing Neural Network Model for a Mech-
anism of Pattern Recognition Una�ected by Shift in Position�. In: (1980).

Geron, Aurelien. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O'Reilly,
2017. Chap. The Machine Learning Landscape. isbn: 978-1491962299.

� Hands-On Machine Learning with Scikit-Learn and TensorFlow. O'Reilly, 2017. Chap. Con-
volutional Neural Networks. isbn: 978-1491962299.

� Hands-On Machine Learning with Scikit-Learn and TensorFlow. O'Reilly, 2017. Chap. Train-
ing Deep Neural Nets. isbn: 978-1491962299.

GTX1080 Ti Nvidia card. https://www.nvidia.com/en-us/geforce/products/10series/geforce-
gtx-1080-ti/. Mar. 2018.

Hillebrand, Kurt. Datenbanken und Informationssysteme.
Hinton, G. E. and R. R. Salakhutdinov. �Reducing the dimensionality of data with neural

networks.� In: Science 313 (July 2006).
ILSVRC ImageNet Challenge. http://image-net.org. Jan. 2018.
Intel Corporation. https://www.intel.com/content/www/us/en/homepage.html. Sept. 2017.
Jacques Mattheij. https://jacquesmattheij.com/. Mar. 2018.
Kingma, Diederik P. and Jimmy Ba. �Adam: A Method for Stochastic Optimization�. In:

CoRR abs/1412.6980 (2014). arXiv: 1412.6980. url: http://arxiv.org/abs/1412.6980.
Kuehni, Rolf G. Color Space and Its Divisions: Color Order from Antiquity to the Present.

Wiley-Interscience, 2003. isbn: 978-0471326700.
LDView. http://ldview.sourceforge.net/. Mar. 2018.
Lego. https://www.lego.com/en-us/aboutus/lego-group/the_lego_history. Mar. 2018.
Lego logo. http://lego.wikia.com/wiki/LEGO_logo?�le=LEGO_logo.jpg. Mar. 2018.
Logitech C922. https://www.logitech.com/de-at/product/c922-pro-stream-webcam. Oct.

2017.

56

https://en.wikipedia.org/wiki/Angle_of_view
http://brickfetish.com/catalogs/dk/dk_1955.html
https://www.bricklink.com/
https://www.bricklink.com/help.asp?helpID=168
http://doi.org/10.5334/aa.06113
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
http://image-net.org
https://www.intel.com/content/www/us/en/homepage.html
https://jacquesmattheij.com/
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://ldview.sourceforge.net/
https://www.lego.com/en-us/aboutus/lego-group/the_lego_history
http://lego.wikia.com/wiki/LEGO_logo?file=LEGO_logo.jpg
https://www.logitech.com/de-at/product/c922-pro-stream-webcam

Bibliography 57

M. Hassaballah Aly Amin Abdelmgeid, Hammam A. Alshazly. �Description and Matching�.
In: Image Feature Detectors and Descriptors. Springer, 2016.

Mattheij, Jacques. �How I Built an AI to Sort 2 Tons of Lego Pieces�. In: IEEE Spectrum
(June 2017). DOI: https://spectrum.ieee.org/geek-life/hands-on/how-i-built-an-ai-to-
sort-2-tons-of-lego-pieces.

Nathan Sawaya. http://www.nathansawaya.com/. Mar. 2018.
Neural Networks. https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.

Jan. 2018.
Nielsen, Michael A. Neural Networks and Deep Learning. Determination Press, 2015.
Ruder, Sebastian. �An overview of gradient descent optimization algorithms�. In: CoRR

abs/1609.04747 (2016). arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747.
Sort Your Legos Like an Engineer. https://makezine.com/2015/07/20/sort- legos- like-

engineer/. Mar. 2018.
Tensor�ow. https://www.tensor�ow.org/. Jan. 2018.
TensorLayer. https://tensorlayer.readthedocs.io. Jan. 2018.
Y. LeCun L. Bottou, Y. Bengio and P. Ha�ner. �Gradient-based learning applied to doc-

ument recognition�. In: Proceedings of the IEEE (Nov. 1998). url: http://yann.lecun.
com/exdb/publis/pdf/lecun-98.pdf.

https://spectrum.ieee.org/geek-life/hands-on/how-i-built-an-ai-to-sort-2-tons-of-lego-pieces
https://spectrum.ieee.org/geek-life/hands-on/how-i-built-an-ai-to-sort-2-tons-of-lego-pieces
http://www.nathansawaya.com/
https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://makezine.com/2015/07/20/sort-legos-like-engineer/
https://makezine.com/2015/07/20/sort-legos-like-engineer/
https://www.tensorflow.org/
https://tensorlayer.readthedocs.io
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Bibliography 58

z

Messbox zur Druckkontrolle

� Druckgröÿe kontrollieren! �

Breite = 100 mm
Höhe = 50 mm

� Diese Seite nach dem Druck entfernen! �

59

	Eidesstattliche Erklärung
	Abstract
	Kurzfassung
	Introduction
	History
	Bricklink
	Task
	Technologies

	Assisting functions
	Database
	Database structure
	Reducing the number of parts

	Scale
	Weight Groups
	The Advantage of pre-sorting
	The Scale used to identify the weight group of a part
	The Problem with pre-sorting
	Software

	Image Processing
	OpenCV - Open Source Computer Vision Library
	Changing the Colourspace
	Smoothing the Image
	Image Thresholding
	Morphological Transformation
	Removing static disturbing objects
	Removing white borders
	Reducing the Size
	Result

	Physical Structure
	System
	RaspberryPi 3

	Surrounding Components
	Number of cameras
	Illumination
	Placement

	Angle of view
	Camera
	Problems
	Chosen Product

	Camera-Box
	Building the Box from scratch
	BOSCH Profiles
	Chipboard Box

	Part Classification
	Recap
	Measurement Procedure
	Choosing the right approach
	Feature Detection
	Learning Models

	Machine Learning System
	Different Machine Learning Systems
	Fitting the task
	Convolutional Neural Networks
	Designing a test network
	Optimiser
	Prevent overfitting

	Expanding the Network
	Testing the correct operation
	Wrong Assumptions
	Correction of the Mistake
	Number of outputs

	The learning process
	Virtual generation of training data
	Learning of the general structures
	Learning in the measurement environment
	Predicting the part number

	User Interface
	The Bridge
	Libraries used to establish communication
	Message Types

	Database API
	Used libraries to implement http methods
	Mode of operation

	Architecture
	States

	Frontend
	Used Libraries to create a good user experience
	User Interface Client
	Networks
	Live Preview
	Reinforcement Learning
	Virtual Learning

	Installation
	Preconditions

	Conclusion
	Recap
	Image classification software
	Mechanical setup
	User interface
	Summary

	Outlook
	Mechanical concepts
	Software improvement
	System improvement

	Bibliography

