
fl0w - a Workflow Optimisation Tool
Philip Trauner, Christoph Heiss, Nico Kratky, Nico Leidenfrost, Sebastian Schaffler, Christine Zeh, Sascha Zemann

Department for Computer Science
Federal Technical Secondary College in Wiener Neustadt

Austria
i13092@student.htlwrn.ac.at

Abstract—This publication introduces fl0w, a robotics
workflow improvement tool designed to save time and be a viable
alternative to the newly developed Harrogate. The benefit of fl0w
is offsite compiling and basic remote control of Wallaby
Controllers. It focuses on the implementation of all the parts
required for fl0w to fit its purpose, namely the Server, the
network protocol, the Sublime Text plugin, and the Wallaby
client. Additionally it describes how fl0w can and should be used
and an example workflow is shown. Lastly there are some
statistics presented that depict how much time is saved by using
fl0w.

Keywords—offsite compiling; workflow improvements;
educational robotics;

I. INTRODUCTION
fl0w was developed out of a need for a fast, reliable and

wireless workflow solution that can compete with the currently
available offerings. Its main objective is to reduce compile time
to a minimum by offloading it to a separate computer while
also moving all robot programming into Sublime Text.

II. ADVANTAGES
Sublime Text is a text editor with widespread use

throughout the developer community, as detailed by Package
Controls statistics [1, 2]. Unlike Harrogate [3], which is the
new web interface and development platform introduced with
the Wallaby, it is a native application with versions available
for every major operating system. Sublime Text has a package
manager (Package Control), syntax highlighting for a variety of
languages, autocompletion, a capable plugin API and is very
fast compared to similar text editors such as Atom [4, 5]. In
contrast to Harrogate and the KISS IDE Sublime Text is also
used for non-robotics programming which enables the user to
work on all of their projects in the same development
environment [6]. Hence it is a prime candidate for robot
programming.

fl0w makes use of the plugin API and integrates tightly
with Sublime Text. This enables offsite compiling, robot
remote control through Sublime’s interface and synced projects
between multiple Sublime Text clients. By offloading workload
from the Wallaby to a faster system compile time is sped up
and battery power is saved.

III. IMPLEMENTATION
Python 3.5 was chosen as the main language for fl0w

because it is supported by the Wallaby with minor effort and
the Sublime Text 3 plugin API, although very recent language
features are left unused for the sake of backwards compatibility
[7]. This way code can easily be shared between server and

clients which enables the functionality of several internal parts
of fl0w. This results in less duplicated code and a smaller
codebase that is easier to maintain in addition to less points of
failure. Another advantage of Python is its low power usage,
which is important when running on battery powered devices
such as the Wallaby Controller. Lastly fl0w greatly profits from
Python’s unconstrained access model. fl0w utilizes a modified
version of watchdog, a Python library that reports file system
events, in the Sublime Text plugin and an unmodified version
on the server for file synchronization [8].

fl0w is distributed as a complete package containing Server,
Sublime Text Client and Wallaby Client to avoid version
mismatches.

A. Server
The server is the heart of fl0w. It compiles code,

synchronizes source files with Sublime Text clients and the
simultaneously generated binaries with Wallaby Controllers
and its implementation is about as long as both clients
combined (excluding shared code). There is no direct
communication between Sublime Text clients and Wallaby
clients at any time, but data can be shared between them
through the server-side. Neither Sublime Text clients nor
Wallaby Controller are owned by one another, instead every
client is permitted to send information to any other client
trough means provided by the server. This simplifies the
underlying network protocol when multiple Wallaby
Controllers are targeted by a single Sublime Text client and
Vice-versa.

The server can talk with specific groups of clients at once
via broadcasts. This way a message that’s only supposed to be
sent to one type of client does not arrive at the other ones.

There is no need for user authentication and permission
management in fl0w because it should only be used in a local

Fig. 1: Overview of fl0w's network paths which demonstrates that all data
is routed through the server and no client to client connections exist.

mailto:i13092@student.htlwrn.ac.at

environment, so the server only has to receive the client type
when a connection is established.

The server is made to run on an ARMv7 board with a
recent Linux distribution installed because the Wallaby uses the
same processor architecture. This allows for compilation on the
server with binary-compatibility. It could also run on a Wallaby
Controller although the speed benefit gained by compiling on a
separate device is diminished by doing so, in consequence, it
isn’t officially supported nor recommended. During
development of fl0w a Raspberry Pi 2 was used [9].
B. Network Protocol

fl0w uses its own TCP based layer-oriented asynchronous
networking library. Every connection is handled in a dedicated
thread, because scalability to hundreds of users was not a
concern when designing fl0w.

It consists of many different network submodules that work
independently. This essentially means that there are handlers on
top of a router, which is a logical unit controlling data flow.
The handlers can be shared between all users or just serve a
single one. All handlers are assigned a route, which is best
described as a logical data line connecting two handlers, over
which they have full control.

Routes are implemented on server- and client-side and are
deeply integrated into a custom socket, which hides buffer
allocations and data type conversions. It is implemented as a
proxy class that overrides the default send and receive methods
found in Python’s socket implementation.

When a send operation occurs data length, data type and the
route are bundled into a header in front of the raw data. A
receive call uses the prepended metadata to determine message
length (used to do away with TCP packet fragmentation), data
type (a hint to speed up automatic data type conversion) and
the route.

Python’s weak typing simplified automatic data type
conversion and its overridable attribute lookup made the
creation of a proxy class possible. Data structs are used to
prepend metadata to messages and collections are transformed
to JSON [10] when transferred over fl0w’s custom socket.

C. Sublime Text Plugin
Sublime Text by default uses JSON configuration files for

its menus but also includes an API call that allows for dynamic
menus [10]. fl0w ships with an abstraction layer around that
particular call, which allows an object-oriented menu approach
with sub-menu support and Back buttons.

As with any user interface, network operations have to be
asynchronous to prevent freezes. This is the main reason the
Sublime Text plugin includes nearly the same routing based
network stack the server does.

In addition to its networking stack the fl0w plugin also
comes with a network submodule that synchronizes all source
code with the server. For this feature to work it was necessary
to listen for filesystem events. Sublime Text’s API includes
functions that can be used to achieve this goal, however
modifying watchdog, the library that is used server-side to
capture such events, to run inside Sublime Text was chosen as
it allows for additional shared code.

By default the Python interpreter inside Sublime Text
behaves differently to the regular, non-embedded, version
when it comes to imports. Source code can not be imported
from the main plugin directory. Through the manual
manipulation of import paths it was possible to bypass this
behavior and import modules inside the plugin directory which
enabled the use of already existing Python code with minor
changes.

Another feature of the plugin makes it possible to run
actions on the client remotely. This enables simple remote
control capabilities of a robot like starting and stopping a
program.

D. Wallaby Client

The Wallaby client receives all compiled binaries from the
fl0w server every time a change is made. It never receives
source code. The binaries can be executed through Sublime
Text and the Wallaby’s default user interface. In a competition
scenario the client can be terminated without the loss of

Fig. 3: fl0w’s main Sublime Text interface while connected to a server.

Fig. 2: fl0w’s custom socket packet structure that is required to hide buffer
allocations and enable message routing. The numbers on the left represent
how many bytes are reserved for each part.

programs to comply with the Botball ruleset which does not
allow any network communication during a competitive run.

Like the Sublime Text client it also integrates tightly with
fl0w’s network stack.

IV. SETUP

A. Prerequisites
A Raspberry Pi 2 running Raspbian Minimal is

recommended to run the server because it is the primary
development platform of fl0w, is portable and can be powered
off a battery-bank [9, 11].

The Sublime Text plugin works on all platforms but unlike
Sublime Text itself, is only tested on OS X and Linux regularly.
B. Installation

Installation instructions are located in fl0w’s GitHub repo
which always contains the latest version of fl0w (Which will
go public once ECER 2016 starts to ensure all important issues
are resolved and fl0w is ready to use.) [12].

V. STATISTICS
fl0w was developed with the goal of providing a faster

workflow than Harrogate over USB and WiFi. Editing a C
program that is 100 lines long and includes two header files
(each 20 lines long), compiling it and starting execution was
chosen as a test scenario. Time was measured as soon as the
compile process started and stopped when the generated binary
started running.

fl0w’s server was executed on a non-overclocked
Raspberry Pi 2 [9] and the USB connection time includes time
spent walking over to the bot to plug it into a computer (+4.5
seconds). Because user input time had to be taken into
consideration every method was performed at least 20 times by
the same person before 10 time measurements were taken.

The current version of fl0w delivers following results in
those conditions on a Wallaby Controller (running update v16):

fl0w can not be used over an USB connection when using a
separate device as server. fl0w's server can also be executed on
a Wallaby Controller, although this was not tested because it is
neither officially supported nor recommended.

CONCLUSIONS

A. Authentication
fl0w currently relies on network level security and does not

use an authentication system. This was done because credential
input on Wallaby Controllers would require a user interface.
One possible solution to this problem is the creation of a
Harrogate [3] app to modify client settings. Another solution is
to require authentications in the Sublime Text client only,
which would not prevent Wallaby Controller clients from
downloading binaries, but would protect the source code.

B. Version Mismatches
Version mismatches are problematic because newer

versions of fl0w usually contain more features than the
previous ones. There is currently no plan to mitigate this issue
other than an easy to use update system that can be triggered
within the Sublime Text plugin.

C. Interpreted Languages
fl0w can not be applied to interpreted languages in its

current state as it heavily focuses on binary synchronization.
This is accomplished through a separate file synchronization
route for Wallaby Controllers. In case of non-compiled
languages the same file synchronization route could be used for
Wallaby Controllers and Sublime Text clients because the
source code is required on both. Unless there is a demand for
this feature, it will not be implemented.

D. Environment Variables and Arguments
The possibility to start program from the Wallaby’s user

interface prevents features such as startup arguments for
programs and environment variable editing because they are
not available in the Controllers user interface.

E. Installation
fl0w’s installation procedure currently consists of many

steps, and is not newcomer-friendly at all. It is planned to be
improved with prepackaged requirements for the Raspberry Pi
2 and the Wallaby Controller. This way there is no need for the
user to compile anything by themselves which at the moment
can take up to 30 minutes.

APPENDIX

A. Example Usage
1. Connect to a fl0w server in Sublime Text 
(Tools → Command Pallet → fl0w: Menu → Connect)
2. Connect a Wallaby

3. Create hello_world.c in Sublime Text

4. Content of hello_world.c: 
 
#include <stdio.h> 
 
int main()  
{ 
 printf(“Hello World\n”); 
 return 0; 
} 

5. Save.

6. Open Wallaby Control  
(Tools → Command Pallet → fl0w: Menu → Wallaby
Control)

1. Choose Wallaby from list

2. Use Run

3. Select hello_world

7. Program will now run on the selected Wallaby and
output is piped into Sublime Text

Time comparison

USB WiFi

Harrogate 11.25s 6.25s

fl0w - 4.41s

VIII. GLOSSARY
API - Application Programming Interface, a set of routines,

protocols and tools for building software applications
IDE - Integrated Development Environment, a software

application that provides comprehensive facilities to computer
programmers for software development

ARMv7 - a CPU architecture developed by ARM
TCP - Transmission Control Protocol, a protocol which

provides reliable, ordered and error-checking delivery of a
stream of octets between applications

JSON - JavaScript Object Notation, a lightweight data-
interchange format

Binaries - a computer file that is not a text file which is
executable by the system

ACKNOWLEDGMENT
The author would like to thank the robotics team

robot0nfire: Christoph Heiss, Nico Kratky, Nico Leidenfrost,
Sebastian Schaffler, Christine Zeh, Sascha Zemann for
continued support during development; Dr. Michael Stifter for
making the existence of our team possible; Daniel Maximilian
Swoboda for answering all paper related questions and the
KIPR development team without whom the Wallaby Controller
would not exist.

REFERENCES
1. Will Bond; “Package Control Statistics”; https://packagecontrol.io/stats;

usage statistics page; 2015; accessed April 7th 2016
2. Jon Skinner; „Sublime Text“; https://www.sublimetext.com/; product

page; 2014; accessed April 7th 2016
3. Stefan Zeltner and David P. Miller; “Kiss Your Old KISS Goodbye”;

h t t p : / / w w w . g c e r . n e t / s c o r i n g / p a p e r s /
KISS_Miller_KissYourOldKISSGoodbye.pdf; online paper; 2015;
accessed February 26th 2016

4. Will Bond; “Package Control”; https://packagecontrol.io/; online
homepage; 2015; accessed February 26th 2016

5. GitHub Inc.; “Atom”; https://atom.io/; product page; 2012; accessed
February 26th 2016

6. Nafis Zaman, Braden McDorman, Jorge Villatoro; http://www.kipr.org/
products/kisside; source code; 2009; accessed April 7th 2016

7. Guido van Rossum; “Python”; https://www.python.org/downloads/
release/python-350/; release page; 2015; accessed February 26th 2016

8. Yesudeep Mangalapilly; “watchdog”; https://github.com/gorakhargosh/
watchdog; source code; 2010; accessed February 26th 2016

9. Eben Upton; “Raspberry Pi”; https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/; product page; 2015; accessed February 26th
2016

10. Francis Galiegue, Kris Zyp and Gary Court; “JSON Schema: core
definitions and terminology”; http://json-schema.org/latest/json-schema-
core.html; online paper; 2013; accessed February 26th 2016

11. Diederik de Haas and Toni Spets; “raspbian-ua-netinst”; https://
github.com/debian-pi/raspbian-ua-netinst/graphs/contributors; source
code; accessed March 17th 2016

12. Philip Trauner; “fl0w”; https://github.com/robot0nfire/fl0w; source code;
2016; accessed February 26th 2016

https://packagecontrol.io/stats
https://www.sublimetext.com/
http://www.gcer.net/scoring/papers/KISS_Miller_KissYourOldKISSGoodbye.pdf
https://packagecontrol.io/
https://atom.io/
http://www.kipr.org/products/kisside
https://www.python.org/downloads/release/python-350/
https://github.com/gorakhargosh/watchdog
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://json-schema.org/latest/json-schema-core.html
https://github.com/debian-pi/raspbian-ua-netinst/graphs/contributors
https://github.com/robot0nfire/fl0w

