
Botball meets ARIS, a novel Autonomous Robot
Interface Simulation System

Lukas Leskovar*, Marcel Dinhof, Manuel Kempf, Antonia Oberhauser, Florian Zachs, Niklas Wieser
Technical Secondary College

Department of Computer Science
2700 Wiener Neustadt, Austria

*Corresponding author Email: leskovar.lukas@student.htlwrn.ac.at

Abstract—Testing is a critical, time-consuming, and tedious
part of the development of a Botball® robot. A simulation system
could support the user in this process and improve results as er-
rors due to over-adjustment can be ruled out. This work describes
the implementation and validation of a Robot Operating System
(ROS) based simulation system called ARIS (Autonomous Robot
Interface Simulation System). For this purpose, the precision of
simple robot movements in the setting of a game table using
ARIS was analyzed and compared to data obtained on robot
behavior in the real world. The results provide evidence for
the general feasibility of the developed simulation system, thus
being a starting point for further projects. Considering the highly
complex scenario of Botball® the simulation at its present state
does not sufficiently meet all requirements to sustainably aid
physical testing.

I. INTRODUCTION

While developing a robot, many aspects have to be taken
into account, but one of the most critical and time-consuming
parts is testing. Especially when striving for high precision and
reliability, it is essential to repeat and document the robot’s
task many times to achieve meaningful results, particularly in
preparation for a Botball® competition. For example, defining
and fine-tuning the startup routine can be challenging for in-
experienced users. Therefore simulating a robot’s movements
in a virtual environment could facilitate robot development.

As Botball® is a highly complex environment, it is chal-
lenging to simulate every aspect of the competing robot.
Accurately, modeling a general-purpose simulation with all
available sensors and actuators would require much more
extensive development than possible during a Botball® season.

Therefore the authors decided to develop a simple simula-
tion of fundamental motion. The simulated movements were
then compared to a real-world system.

This paper proposes a prototype for simulating a robot
carrying out linear motion on a Botball® game table by im-
plementing the system of ARIS (Autonomous Robot Interface
Simulation).

II. STUDY OF LITERATURE

As R. D. Smith states, ”Simulation is the process of de-
signing a model of a real or imagined system and conducting
experiments with that model” [1]. Consequently, simulation is
one of the most important branches in the technological sector,
states Smith.

Fig. 1: Diagram visualizing the correlation between ROS,
GAZEBO and the robot hardware to be simulated, whereas
the pluggable design of ROS allows for easily substituting a
real world system without having to change the controlling
algorithms [2].

Its use-cases range from relatively simple situations like
simulations for educational purposes and video games to
simulating computational experiments in physics, chemistry,
and other scientific areas. For example, in robotic engineering,
simulation systems’ main task is testing a robot’s behavior
and conveniently adjusting its parameters until it performs as
expected.

One example for the simulation of robots is the AWS Deep-
Racer competition, where robots have to follow a predefined
track as quickly as possible[3]. The robots are controlled by a
machine-learning algorithm trained in the provided simulation
environment.

Another significant example within the space of
Botball® is the KISS IDE Simulator, an online typescript-
based simulation of the KIPR demo bot with an
integrated IDE tailored to Junior Botball® teams [4].



Fig. 2: A depiction of a basic robot model in the GAZEBO
simulation which is used in section V.

Although the KISS IDE Simulator already proposes an easy-
to-use simulation, it lacks configurability of robot hardware.
This renders it infeasible for many Botball® teams operating
with custom robots rather than the demo bot.

III. SYSTEMS & TOOLS

ARIS takes a first step into implementing a fully customiz-
able robot simulation.

The system is based on the Robot Operating System (ROS)
[6] in combination with GAZEBO [7]. ROS is responsible for
controlling the robot, while GAZEBO is used for simulating
the 3D environment (see Figure 1).

A. ROS

ROS is an open-source framework providing many libraries
and tools for developing robotic applications. It implements
functionalities found in conventional operating systems and
robot frameworks, such as hardware abstraction, process com-
munication, and package management. ROS facilitates code
reuse in robotic applications through integration in various
languages and frameworks.

By implementing packages as lightweight as possible, with
each aiming to contain only enough functionality as necessary
for a specific purpose, the broad applicability of ROS is
emphasized.

Furthermore, its open-source code repository system enables
the community to share and use packages within ROS [8].

B. GAZEBO

GAZEBO is an open-source 3D dynamics simulator with
the ability to accurately and efficiently simulate robots in
intricate indoor and outdoor environments. It uses a distinct set
of libraries for physics simulation, rendering, user interface,
communication, and sensor generation [9].

A robot in GAZEBO can be defined in the Simulation
Description Format (SDF), an XML format used for robot
simulation, visualization, and control [10].

Figure 2 shows how such a robot may be represented
within GAZEBO.

IDE System

Robot Applicationros_control

Motors

compiling and 
running robot code

Fig. 3: Diagram depicting the architecture of ARIS.

To autonomously control a robot in the GAZEBO simula-
tor, ROS provides the gazebo ros pkgs [12] package, which
contains the necessary interfaces for communication between
ROS and GAZEBO.

IV. AUTONOMOUS ROBOT INTERFACE SIMULATION

To improve the process of testing a robots movement
on the game table, a simple GUI with a built-in IDE was
included in the project. A library with Wallaby-like motor
control functions was implemented to allow ARIS to use the
same code as for the Wallaby. While their function signature
remains identical to the libwallaby, they internally implement
robot control using the ros control package. Following error-
checking of the code, ROS interprets the input and uses
GAZEBO to control a simulated robot model. GAZEBO offers
a high level of detail, as realistic sensor inputs can be simulated
easily. Ultimately the system should provide the user with an
accurate estimation of how the robot would behave with the
given code basis and helps to improve the movement strategies
of the robot on a Botball® game table.

A. Concept

The structure of ARIS is split into two parts.
The first part deals with the interaction between ROS

and GAZEBO. Description files for the simulation were
stored in catkin [13], a build system based on CMake and
Python Scripts. It is primarily used in ROS for structur-
ing packages. The most essential files for GAZEBO are
the launch file and the Unified Robot Description For-
mat (URDF) file. Both are structured in XML and contain
the information needed for the robot and its environment.
GAZEBO’s so-called ”empty world” was used for the ex-
periments. It is a pane with a single light source into which
a self-made 3D model of the 2019 game table was placed.
In order to put the robot into motion, a ROS plugin for
differential drive was included in the simulation.

The second part is the Graphical User Interface (GUI)
written in Java and Python, providing a simple editor with
auto-completion. Additionally, the connection to ROS was

2



Fig. 4: For experimental purposes, a relatively simply built
robot was used, consisting of a metal base plate, two solar-
botics wheels powered by standard Botball® motors, a ball-
caster wheel and the KIPR Wallaby.

established by Python scripts operating in the background.
When running ARIS, a GAZEBO window opens, showing the
simulated world in which the robot moves.

Subsequently, ROS establishes a connection to GAZEBO
and the simulated robot. After all communication between the
subsystems is set, ARIS is able to execute the code in the
simulation. In order to better reflect the system’s structure,
the interaction between all components can be seen in Figure
3.

V. EXPERIMENTS

The system aims to simulate movement conditions as close
to reality as possible. This ensures that the code written for the
simulated robot can be used in real-world applications without
significant adjustments.

A. Setup

For the experiment, a camera was installed on the ceiling
above the game table, which captured a 1x1m area in which
the robot operates. With OpenCV [14] a grid identical to
the one in the 3D simulation was superimposed with the
captured footage. The grid was used to position and orientate
the robot at the same starting point as the simulated robot,
thus, providing a link between reality and simulation. Each
quadrant of the grid had a size of 10x10cm. To indicate the
position of the robot in the grid, the center of the robot was
highlighted.

B. Execution

The simulated robot was put into the center of the bottom
left quadrant.

The robot then was given the objective to move to the center
of another given quadrant with an alignment angle between
90° and 45° from the starting point, resulting in distances

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [m]

y [m]

Robot

Fig. 5: Schematic representation of a 1x1m grid serving as
the experimental setup with the possible movement area of
the robot illustrated by the two dashed arrows. The red dot
represents the starting position while the circle labeled robot
corresponds to a potential end location.

between 10 and 127.28 cm, as seen in Figure 5. Afterwards,
the robot’s position within the simulated coordinate system
was recorded. This process was repeated for all quadrants
within the movement area.

The center of the targeted quadrant was used as a reference
point for analyzing the deviation measured in the experiments.

The setup for the real robots experiments was identical
to the simulation, with the robot also performing a linear
movement. After the machine stopped, the coordinates of the
robot on the game table were determined by measuring the
distance between the boundaries of the grid and the center of
the robot using analog techniques (see Section V-A).

Two values where collected for each iteration:
• position of the simulated robot
• position of the real robot
As mentioned, the center of each quadrant served as the

reference for calculating the deviation in both scenarios,
yielding the overall precision of both systems.

VI. RESULTS

A. Simulated robot

The blue marks visualize the results for the simulated robot
in Figure 6A, which represent the distance driven (as the x-
axis) and the deviation between the position of the simulated
robot and the reference value (as the y-axis).

As visible, the deviation indicates an increase
in values with growing distances which is
clarified by superimposing a linear regression.
The observed tendency meets the expectation that the
deviation increases with growing distances. However, the

3



0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

Distance [cm]

D
ev

ia
tio

n
[c

m
]

y = 0.02 ∗ x+ 2.5;R2 = 0.22

(A) Deviation from the reference value in correlation with increasing
distances for the simulated robot.

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

Distance [cm]

D
ev

ia
tio

n
[c

m
]

y = 0.01 ∗ x+ 1.82;R2 = 0.13

(B) Deviation from the reference value in correlation with increasing
distances for the real robot.

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

Distance [cm]

D
ev

ia
tio

n
[c

m
]

Simulation Trendline
Real Robot Trendline

(C) Linear regressions of the simulated (cyan) and real (orange) robot
data.

Fig. 6: Visualized data which was obtained in Section V-B.

coefficient of determination R2 shows that the trend line can
explain only 22% of data points. This property indicates that
the linear regression model cannot sufficiently describe the
correlation between distance and deviation of the simulation.
The visible scattering of values reflects the simulation’s
similarity to reality and its corresponding inexactness.

B. Real robot

As mentioned above, the same experiment was performed
with the real robot, which produced the results highlighted by
the red marks in Figure 6B.

Comparable to the results for the simulated robot, an
increasing deviation can be observed, as illustrated by the
linear regression. Additionally, R2 shows that the calculated
linear fit is not suitable for predicting values of the real-world
experiment, similar to the one observed in the simulation.
Dealing with real-world mechanical inaccuracies as well as
inexactness in the experimental setup explains the spread of
values.

C. Comparing simulation and reality

When comparing the simulated robot’s results with real
robot experiments, the obtained data points do not match
exactly. However, a notable parallel course is detectable.

As shown in Figure 6C the calculated linear regression for
both settings are not identical in terms of slope and absolute
deviation values, thus pointing out remaining inaccuracies of
the simulation. As the simulated robot has not been extensively
calibrated to meet factors such as friction, weight and wheel
imperfections may have influenced the simulation may not
precisely match real-world error patterns.

VII. CONCLUSION

Our data show evidence for the basic applicability of
ARIS in the practical usage of Botball® thus facilitating the
development of competing robots for inexperienced users and
Junior Botball® students. However, the fact that the presented
simulation system was tested exclusively for linear movements
and its weaknesses in terms of precision necessitates further
research. Specifically, the interaction of factors influencing
the robot’s behavior in the real world environment could be
reflected more accurately in the simulation. In summary, a
prototype for the simulation of a simple Botball® robot is pro-
vided, thus building the base for the continuous development
of a sophisticated tool for substantially more complex robots,
environments, and scenarios.

Although ARIS only implements the most basic concept of
a robot, the topic does introduce promising ideas to the field of
Botball®. Furthermore, the connection of KIPR libraries, ROS,
and GAZEBO may open up new possibilities for modeling,
testing, and deploying competing robots.

The development of this basic model will be continued as a
fully-fledged software project to implement a fully functional
software application for Botball®.

4



ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Stifter for his
support throughout the work on this paper.

REFERENCES

[1] R. D. Smith - Simulation The Engine Behind The Virtual World
- https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.
1876&rep=rep1&type=pdf (Accessed December 4th 2021)

[2] Mayank Mittal - Introduction to Robot Simulation (Gazebo) -
https://mayankm96.github.io/assets/documents/teaching/ae640a/
ae640a lecture2.pdf (Accessed December 27th 2021)

[3] Amazon Web Services, Inc. - AWS DeepRacer - https://aws.
amazon.com/deepracer/?nc=sn&loc=0 (Accessed December 4th
2021)

[4] KISS Institute for Practical Robotics - KISS IDE Simulator -
https://github.com/kipr/simulator (Accessed March 27th 2022)

[5] KISS Institute for Practical Robotics - KIPR Wallaby - https:
//www.kipr.org/kipr/hardware-software (Accessed February 20th
2022)

[6] Open Source Robotics Foundation - ROS Wiki - https://wiki.ros.
org/ (Accessed December 6th 2021)

[7] Open Source Robotics Foundation - GAZEBO - http://
gazebosim.org/tutorials?cat=guided b&tut=guided b1 (Accessed
December 4th 2021)

[8] K. Lampalzer, M. Grill - Autonomous Aerial Reconnaissance
Drone - https://robo4you.at/publications/Autonomous Aerial
Reconnaissance Drone.pdf (Accessed December 6th 2021)

[9] Architecture - GAZEBO Tutorial - http://gazebosim.org/
tutorials?tut=architecture&cat=get started (Accessed December
25th 2021)

[10] Open Source Robotics Foundation - Simulation Description
Format - http://sdformat.org/ (Accessed December 25th 2021)

[11] ROS integration - GAZEBO Tutorial - http://gazebosim.org/
tutorials?tut=ros overview&cat=connect ros (Accessed Decem-
ber 25th 2021)

[12] gazebo ros pkgs - ROS Wiki - https://wiki.ros.org/gazebo ros
pkgs (Accessed December 6th 2021)

[13] catkin overview - ROS Wiki - http://wiki.ros.org/catkin/
conceptual overview (Accessed February 20th 2022)

[14] OpenCV Team - Open Source Computer Vision Library - https:
//opencv.org/about/ (Accessed January 15th 2022)

5

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.1876&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.1876&rep=rep1&type=pdf
https://mayankm96.github.io/assets/documents/teaching/ae640a/ae640a_lecture2.pdf
https://mayankm96.github.io/assets/documents/teaching/ae640a/ae640a_lecture2.pdf
https://aws.amazon.com/deepracer/?nc=sn&loc=0
https://aws.amazon.com/deepracer/?nc=sn&loc=0
https://github.com/kipr/simulator
https://www.kipr.org/kipr/hardware-software
https://www.kipr.org/kipr/hardware-software
https://wiki.ros.org/
https://wiki.ros.org/
http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
http://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1
https://robo4you.at/publications/Autonomous_Aerial_Reconnaissance_Drone.pdf
https://robo4you.at/publications/Autonomous_Aerial_Reconnaissance_Drone.pdf
http://gazebosim.org/tutorials?tut=architecture&cat=get_started
http://gazebosim.org/tutorials?tut=architecture&cat=get_started
http://sdformat.org/
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
https://wiki.ros.org/gazebo_ros_pkgs
https://wiki.ros.org/gazebo_ros_pkgs
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/catkin/conceptual_overview
https://opencv.org/about/
https://opencv.org/about/

	Introduction
	Study of Literature
	Systems & Tools
	ROS
	GAZEBO

	Autonomous Robot Interface Simulation
	Concept

	Experiments
	Setup
	Execution

	Results
	Simulated robot
	Real robot
	Comparing simulation and reality

	Conclusion

