
Improvement of the hedgehog controller

Amalia Sirbescu*, Katharina Stelzer, Daniel Wieser, Christoph Hofer, Florian Baumgartner, Lukas Miehl, Jan
Fenyö

HTL (school for higher technical education)
Department of Computer Science
2700 Wiener Neustadt, Austria

*E-Mail of the corresponding author: sirbescu.amalia@student.htlwrn.ac.at

One of our robots we have chosen to work with
for the PRIA Open® competition is the
hedgehog. During our work we realized that the
hedgehog controller sometimes has some saving
errors. For example, after improving the
program, which was just written, the hedgehog
controller overwrites the actual program. In this
work we want to present different solutions on
how to deal with these kinds of and other
problems. The simple backup copy, the more
advanced backup copy, how to manually
generate a *.pyc file from a *.py file, the public-
keys-procedure and cross-compiling (a method,
which works better for C/C++ programming).
Each and every solution has its advantages and
disadvantages and needs specific circumstances,
so that it can work.

1. SIMPLE BACKUP COPY

The first solution that probably comes to
everybody’s minds on how to deal with saving errors
is to make a backup copy. Every time before closing
the program, all the program has to be copied and
inserted into an empty text document. Of course, this
way is pretty impractical. That one time the work has
been forgotten to be copied, the controller will erase
it, or only parts of it, and it will have to be written
again. The advantage, if this happens, is that the new
program may be better than the last. But, if, for
example, more than one programs are being worked
on, this way of securing can get confusing and
repetitive.

2. ADVANCED BACKUP COPY

Especially, if more programs are being worked on,
this solution will be easier to work with. Instead of
pasting the program on a simple text document, this
solution shows how to copy whole files with
programs to the hedgehog. First of all, it needs to be
made sure there is a FTP-Client-Software installed

on the computer. We are using WinSCP, a free FTP-
Client-Software for Windows (the following
pictures are based on WinSCP).

Figure 1 Starting Page WinSCP

After starting the FTP-Client-Software, a connection
between the software and the hedgehog has to be
developed.

Figure 2 Connecting with hedgehog

(As you may notice in the pictures above, our
WinSCP software language is German, but this shall
not have any impact on your understanding.) The
host name field must be filled with the IP-address of
the hedgehog. The user name is “pi” and the
associated password is “raspberry”. Finally, after
clicking on the “login” button, a connection with the
hedgehog will be built.

Figure 3 Hedgehog program structure

Afterwards the hedgehog’s program structure will
be displayed on the desktop. The programs, which
were written before on the Web-IDE, will be in the
folder “hedgehog-programs”.

Figure 4 Example: our programs in “hedgehog-
programs”

Figure 5 Example: our programs in Web-IDE

Now the programs can be written on the PC and the
programs are being copied in the directory.

3. MANUALLY GENERATE *.PYC FILE
FROM A *.PY FILES

If the operating system is Linux, “compileall” can be
used, if wished. The following command will go
recursively into sub directories and make *.pyc files
for all the python files it finds. The “compileall”
module is part of the python standard library, so
nothing extra has to be installed for using it. This
works the same way for python2 and python3.

“python -m compileall”

With the following command a program, which in
our case just prints out the number “123”, will be
copied on the hedgehog.

“scp program.py pi@ip-address”

Figure 6 Copy on hedgehog

After inserting it in the hedgehog, the next step is
to switch to the hedgehog by typing in the
command below.

“ssh pi@ip-address”

And the according password, which still is
“raspberry”.

The following command has to be used to execute
the program on the hedgehog:

“python xxx.pyc”

(In python3 a subdirectory “_pycache_” will be
created, where the *.pyc files can be found and
started from.)

4. AUTHENTIFICATION WITH PUBLIC-
KEYS

The public-keys-procedure is used for simpler
working, since the password does not need to be
typed in every time. Asymmetric cryptography
(encryption) will be used to authenticate the user.
The user has a public key, which can be found in the
folder “~/.ssh/authorized_keys” of the target system.
The private key, however, is placed in the “id_rsa”
folder in a directory called “~/.ssh” on the local
system. When using the public-key-method to log in
on an SSH-server, the server will send a random
generated challenge to the client. The server then
encrypts the data block with the client’s public key.
If the client is able to encrypt its cipher with the
associated private key, the identity of the user will
be confirmed. In the directory “~/.ssh” the key will
be created with the following command:

“ssh-keygen -t rsa -b 4096”

With a simple click on the “Enter”- button, the name
can be left on standard.

Figure 7 Creating the key in the ssh-directory

The following step is to copy the key on the second
device, in our case, that is the hedgehog, with the
command written below.

„ssh-copy-id -i ~/.ssh/id_rsa.pub pi@ip-address”

Figure 8 Command: inserting key on hedgehog

After this connecting with the hedgehog will not
need a password anymore. Instead it can be achieved
by typing in:

“ssh pi@ip-address”

Figure 9 Connection to hedgehog without password

5. CROSS COMPILING C/C++

Cross-compiling can be very useful and convenient,
if the user is:

 Writing the programs in C or C++
 Working with Linux

According to Wolfgang Dautermann, who is a
professor at the FH Joanneum, “a cross-compiler is
a compiler, which works on one platform, but
creates executables for another platform. All
components can differ between the Host-computer
and the Target-platform.”

Installing the cross-compiler and the support
programs on the local computer will be
accomplished by typing:

“sudo apt-get install libc6-armel-cross libc6-dev-
armel-cross binutils-arm-linux-gnueabi
libncurses5-dev”

Figure 10 command installing cross-compiler

in a terminal on Linux. Now the compiler will be
installed locally. After writing the program, which
needs to be compiled, the command below has to get
typed in:

“arm-linux-gnueabi-gcc program_name.c -o
target”

Figure 11 Command: compiling program in C

This is, if the user is writing the programs in C. If
the program language the user is using is C++, the
correct program is

“arm-linux-gnueabi-g++ program_name.cpp -o
target”.

Figure 12 Command: compiling program in C++

The following command will achieve that the target
gets transferred on to the hedgehog:

“scp target pi@ip-address”

Figure 13 Command: transferring target to hedgehog

and the password for the raspberry. If this method is
combined with public-key authentication, the
password, will not be needed. Last but not least,
after switching to the hedgehog, the file will be run
by typing in:

“. /target” (target represents the target, which was
set as the file has been compiled.)

Figure 14 Command: running the program

The file itself is on the hedgehog only in machine
program available.

Figure 15 Machine program of your program

6. CONCLUSION

After discussing all the shown solutions, we have
come to an end, that they provide more security.
Also, by using one of them version management can

be made possible and they allow the user to edit the
programs comfortably with the desired IDE on the
local PC or Laptop. Especially when using public-
key authentication, working will become very
convenient, as any program can be started from the
PC easily with just one command.

