

Fighting COVID-19 with the OpenCV Library

Yasin Sahin
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

sahin.yasin@student.htlwrn.ac.at

Sven Oberwalder
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

oberwalder.sven@student.htlwrn.ac.at

Julian Kerer
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

kerer.julian@student.htlwrn.ac.at

Raphael Ackerl
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

ackerl.raphael@student.htlwrn.ac.at

Fabian Hitzenberger
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

hitzenberger.fabian@student.htlwrn.ac.at

Karl Dopplinger
Department of Computer Science

HTBLuVA Wiener Neustadt
Wiener Neustadt, Austria

dopplinger.karl@student.htlwrn.ac.at

Abstract— The Corona virus still impacts our daily lives. In
this document, some useful functions of the OpenCV (Open
Source Computer Vision) library are explained. After that, two
practical project ideas are listed. The projects are meant to help
the humanity fight the currently ongoing pandemic. The one
project being a fever detector and the other one evaluating rapid
antigen tests.

Keywords— OpenCV; library; functionalities; Covid-19;
applications

I. INTRODUCTION

Mankind is dealing with another pandemic after a long
time [7] and we humans are giving our best to prevent
COVID-19 spread even more. Medicine and pharmacy
industries have accomplished a big breakthrough by
manufacturing vaccinations. Health organizations work on
detecting infected people and treating them in the best way.
Now it is time to use the technology more intensely. We
believe that computer vision could help health authorities in
repetitive tasks.

Our motivation comes from this year’s Botball® game,
which has also a reference to the Corona virus. The robots are
tasked with isolating, sequencing and then synthesizing
mRNA [1]. In this document, we will focus on one library -
OpenCV. It is an open-source computer vision and machine
learning software library.

We will start explaining what OpenCV can be used for (II)
and then write about how we will use it for given tasks (III).
Because OpenCV is a vast library, we will be just explaining
functionalities we will use for our ideas. Our goal is to prove
humanity we, roboticists, can also have a part in this -and
effectively. When there are lots of positive cases, health
authorities have problem evaluating too many Covid-tests.
There are also people, who ignore their symptoms. We listed
two practical project ideas to handle both problems.

II. FUNCTIONALITIES

A. Color Recognition

OpenCV is used for color recognition. The inRange()
function allows to filter out pixels within a specified color
range. This function requires an array, an upper and a lower
boundary which includes RGB (=Red, Green, Blue)-values or
HSV values if desired. If the three values of each color channel
(or the hue, saturation, and value) of a pixel are in between the
corresponding boundary values, it is considered in between
the boundaries. It then creates an output-array, which consists
of a set of numbers. These numbers can only be 0 or 255, a 0

meaning that the color-value is not in between the given
boundaries and 255 the opposite [2]. This array allows us to
create a mask and with this mask we can black out parts of the
picture outside given boundaries. In the following picture it
can be seen the boundary-values only accepting green. Color
recognition will later be used in fever detection and antigen
test evaluation under section III.

1) Problems
The example above uses hard coded values as value

boundaries, whereas in reality this method should not be used.
Assume that images or videos are captured in different
lighting conditions. These are situations where we realize
lighting plays a huge role on the output image. Colors might
look very different under varying illuminations and when that
happens the hard-coded boundary-values will fail. To prevent
this, we have to adjust boundary- or the pixel values of the
input image.

2) Solution

a) Color Correction Card
One way of solving the problem above is to use a color

correction card [3]. We need to capture the card as well as the
object we want to capture. Then you need to detect the color
block region within the card and then apply histogram
matching. The ArUco markers help detect the color block
region.

Figure 1: on the left is the input image and on the right the output
image, which is the result of the created mask. The mask uses
following boundaries:
(HSV) Lower: [71, 73, 0], Upper: [84, 255, 255]

b) Histogram Matching
This method requires a reference image. In this method we

take the input image and adjust its pixel intensities so that the
histogram of the input image matches the one of a separate
reference picture. As mentioned, histogram matching can be
applied to a picture with a color correction card. But it also
works with two similar images even though there is no color
correction card in them.

Histogram matching is applied to create aesthetic results
or a basic color correction. This allows us to process images
quicker and easier without the use of complex algorithms of
machine learning.

B. ArUco Markers

ArUco markers are quadratic tags with a 2D pattern: a
black border and a binary matrix within the borders. ArUco

markers are an integral part of many computer vision systems,
including but not limited to:

 3D positioning

 Object size estimation

 Distance measurement

 And many more…

An ArUco dictionary specifies the type of ArUco tags we
want to detect/generate. The ArUco tags’ patterns are
predefined in these dictionaries and if the pattern of a detected
marker matches one in the dictionary, the ID of it will be
returned. ArUco marker detection will be used in evaluating
rapid antigen tests under section III.

C. Face Detection

Face detection is a process, which consists of analyzing
the input image or video and determining the location, size,
position, and the orientation of a face. One method which is
used in OpenCV is the statistics-based approach. Haar
classifier face detection is used to create a search window that
slides through an image and check whether a certain region of
an image looks like a face or not [5]. Haar-like features and a
large set of very weak classifiers use a single feature, which
tells if in a certain image a face is detected or not. It is possible
to train classifiers with a plentiful of negative and positive
examples, but OpenCV provides a pre-trained dataset of
classifiers. Face detection will be used in fever detection under
section III because fever detection will only be started if a face
has been detected.

Haar-like features‘ value is the difference between the sum
of pixels located in the white area(s) and the sum of pixels
located in the black area(s) [4]. If this difference is closer to 1
than 0 the feature could be detected. A feature can be an edge,
a line, or any structure in the image where there is a sudden
change of intensities. For example, the feature C in figure 5
would detect an edge with darker pixels on its left and lighter
pixels on its right.

Figure 3: Histogram of two images; visual description on how
pixel intensities are transformed

Figure 4: The result of histogram matching; left is the input
image, in the middle the reference image and on the right the
output image

Figure 5: Haar-like features

Figure 6: Scanning an image for a face visualized; you can see
a Haar-like feature at the eyes [10]

Figure 2: A color correction card (left) [9]

1) Problems
The illumination and other factors may decrease the

accuracy of the predictions. To obtain correct predictions the
image needs to be preprocessed.

2) Solution
The first step to the solution is to create a blob (=binary

large object). Blobs can store binary data and are used to store
images, audio, or other multimedia files. Preprocessing tasks
normally include:

 Mean subtraction

 Scale

For the mean subtraction task, we need to compute the
average pixel intensity (=mean). All means for each color
channels are described with three variables:

 RGandB

The means from (1) are then subtracted from the color
channels of the input image.

 R R R
 G G G
 B B B

We can also divide by a scaling factor, which adds in a
normalization:

 R (R R)
 G (G G)
 B (B B)

If we need to mean subtract across a set of images, the
value of the scaling factor should be the standard deviation
across the set [6]. Otherwise, OpenCV does not necessarily
require a calculated scale factor. You can set it to 1.

The blobFromImage() function creates blobs. The
function has following parameters:

 image: The input image

 scalefactor: Scale factor (), optional

 size: spatial size the neural network expects

 mean: a tuple of three mean values

 swapRB: if your mean tuple is in the (R, G, B) order,
then it should be set to True. The reason for this is,
that the function expects it to be in the (B, G, R) order

III. APPLICATION

In this section, we will list possible Covid-related
implementations of the functionalities mentioned above.

A. IR Fever Detector

1) Concept/Design
After the lockdown in November 2021 in Austria, we

needed a vaccination, or a proof of recovery to be able to go
almost anywhere (e.g., to restaurants, museums, amusement
parks, events, etc.). At the school or workplace, we had to
make a Covid-test [8]. But places which did not require them
often checked for symptoms, especially your temperature,
even though it was not mandatory. Bots are designed to do

repetitive tasks, and because checking for fever is a repetitive
task, we propose to automate this task using methods of
computer vision. Reference [12] shows a project very similar
to this. isual fever detection was also used during the swine flu
pandemic caused by the H1N1 virus at the Narita International
Airport (Japan).

2) Implementation
This bot is placed at the entrance of the building. It will

adjust its camera until it centers a face and then it will analyze
its input stream. If it detects a large area with temperatures
between 37.5°C and 41°C (= 99.5 F and 105.8 F) it will alert
an employee for further examination of that person.
Furthermore, the temperature check will not be started if a face
could not be captured. It is unnecessary to analyze the input
from the IR-camera if there is no one in front of it.

3) Used functionalities
Color recognition (section II A) is used to scan the

thermos-picture and the face detection functionality (section
II C) to adjust the camera so that a face is centered. A
histogram matching is not needed for the reason that the
illumination in a thermos-picture will not change that much.

B. Antigen Tester

1) Concept/Design
Rapid antigen tests are a quick way to detect a Corona-

infection. In Austria antigen tests are done for that reason and
also for its availability. A robot could be used to automate the
process of evaluating a Covid-test. It would also be quicker
and a basic algorithm with OpenCV and a camera is all it
needs. Reference [14] shows a project on interpreting rapid
diagnostic test results designed just for smartphones.

2) Implementation
Rapid antigen tests use (depending on the manufacturer)

barcodes as their IDs. But we will use ArUco markers because
we explained them. After we can tell the result of the test using
a color detection algorithm, its result will be updated in a
database with the matching ID. The ID can be determined by
scanning the ArUco marker. To avoid detecting red areas
outside of the result area, we will use the position and size of
the ArUco tag. We know that the position of the ArUco
marker and the red line(s) should be approximately the same.
The width of the red lines should be less or equal to the width
of the ArUco marker.

3) Used functionalities
Color recognition (section II A) is used to detect the red

lines on the antigen tests. Because the pictures can have
different illumination it is also necessary to apply histogram
matching (section II A 2 b). We also have to detect ArUco tags
(section II B)

Figure 7: Left: A face being detected; Right: temperature
analysis [11]

IV. CONCLUSION

In this document, we have mentioned and described useful
functionalities of the OpenCV library and explained how they
work. These functionalities were: color recognition, detecting
and generating ArUco markers, and face detection. We also
found solutions for problems which occur. All these
functionalities were then used in III in Corona related
applications. Since we restricted our main tools just to the
OpenCV library, we listed two practical project ideas. But we
are very convinced that we roboticists can help in the
pandemic in much more ways.

ACKNOWLEDGMENT

The authors of this paper would like to thank Dr. Michael
Stifter for his constant support throughout this paper and the
seniors of robo4you organization for proofreading and giving
feedback. Also special thanks to HTBLuVA Wiener Neustadt,
which provided us with a great robotics lab. The co-work with
the Slovak team also helped us improve this paper.

REFERENCES
[1] KIPR, 2022 Botball game review, KIPR, 2022, [Online] Available:

https://www.kipr.org/wp-
content/uploads/2022%20Botball/2022%20Botball%20Game%20Rev
iew%20v1.4.pdf [Accessed Mar. 4, 2022.]

[2] EDUCBA, OpenCV inRange, EDUCBA, [Online] Available:
https://www.educba.com/opencv-inrange/ [Accessed Mar. 9, 2022.]

[3] A. Rosebrock, OpenCV and Python color detection, Aug. 4, 2014
[Online] Available: https://pyimagesearch.com/2014/08/04/opencv-
python-color-detection/ [Accessed Mar. 11, 2022.]

[4] OpenCV, Cascade Classifier, OpenCV, [Online] Available:
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

[5] P. Y. Kumbhar, M. Attaullah, S. Dhere., S. Hipparagi, “Real time face
detection and tracking using OpenCV”, vol. 4, issue 4, International
Journal for Research in Emerging Science and Technology, 2017

[6] A. Rosebrock, Deep learning: How OpenCV’s blobFromImage works,
Nov. 6, 2017 [Online] Available:
https://pyimagesearch.com/2017/11/06/deep-learning-opencvs-
blobfromimage-works/ [Accessed Mar. 11, 2022]

[7] Centers for Disease Control and Prevention, History of 1918 Flu
Pandemic, Mar. 21, 2018 [Online] Available:
https://www.cdc.gov/flu/pandemic-resources/1918-
commemoration/1918-pandemic-history.htm [Accessed Apr. 3, 2022.]

[8] “Wegweiser durch 2G-Österreich: Die wichtigsten Fragen und
Antworten”[Guide through 2G Austria: The most important questions
and answers], Der Standard, Nov. 6, 2021, [Online] Available:
https://www.derstandard.at/story/2000130955558/wegweiser-durch-
2g-oesterreich-die-wichtigsten-fragen-und-antworten [Accessed Apr.
3, 2022]

[9] Pantone, “Pantone color match card”. [digital image], Pantone,
https://www.pantone.com/eu/de/pantone-color-match-card [Accessed
Apr. 3, 2022]

[10] A. Harvey, “OpenCV Face Detection: Visualized”, June 22, 2010.
[video file] Vimeo. Available at: https://vimeo.com/12774628
[Accessed Apr. 3, 2022].

[11] Flir, “Use of infrared to detect elevated body temperatures” p. 1,
[digital image] Available at:
http://support.flir.com/appstories/AppStories/Medical/Swine_Flu_EN
.pdf [Accessed Apr. 3, 2022]

[12] A. Somboonkaew et al., "Mobile-platform for automatic fever
screening system based on infrared forehead temperature," 2017 Opto-
Electronics and Communications Conference (OECC) and Photonics
Global Conference (PGC), 2017, pp. 1-4, doi:
10.1109/OECC.2017.8114910.

[13] H. Nishiura and K. Kamiya, "Fever screening during the influenza
(H1N1-2009) pandemic at Narita International Airport, Japan", BMC
Infectious Diseases, vol. 11, no. 1, 2011. doi: 10.1186/1471-2334-11-
111.

[14] C. Park et al., "Supporting Smartphone-Based Image Capture of Rapid
Diagnostic Tests in Low-Resource Settings", Proceedings of the 2020
International Conference on Information and Communication
Technologies and Development, 2020. doi: 10.1145/3392561.3394630
[Accessed 18 April 2022].

Figure 8: Antigen-test example: left: negative result, middle:
positive result, right: invalid

