
Junior Journal

Journal Name

Opening OpenCV
Regular Paper

Markus Hovorka1 , Clemens Jung1 , Thomas Langenau1 , Philipp Lütge2, ?, Patrick
Podest1 , Veronika Schrenk1 and Bruno Tiefengraber1

1 HTBLuVA Wr. Neustadt, Austria
1 HTBLuVA Wr. Neustadt, Philipp Development Austria
? Corresponding author E-mail: philipp@philipp-development.at

Received D M 2014; Accepted D M 2014

DOI: 10.5772/chapter.doi

© 2014 AMAZeING Team; licensee Junior Journal. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The ongoing development on image sensors and lenses led
to an immense price drop for cameras. The current camera
included in the Botball Kit 2014 has a resolution of 640x480
pixel and is available for about 3 Dollars in Chinese
online shops[1]. The high availability of hardware creates
the need for software which is capable of processing the
recorded images and is easy to use. To make image
processing feasible for everyone OpenCV was developed.
OpenCV is also the heart of the blob tracking library inside
of the Botball firmware. This library only supports blob
tracking and is therefore very dependent on the current
lighting conditions. OpenCV offers a lot of alternatives
to blob tracking. This allows us to choose our object
detection algorithm depending on the current situation.
The following paper will show how to use OpenCV and
adapt it to the needs of a Botball-Team.

Keywords

1. Introduction

All Botballkits are equipped with an RGB - camera which
is accessible through the official Botball firmware. After
a little search we found that the Botball library uses
OpenCV to process the recorded images. Being able to use
the complete OpenCV library would give an impressive
advantage compared to the standard library.

2. Open Source Computer Vision Library[2]

OpenCV is an open source library for computer vision
and machine learning. As it is licensed under a BSD
license it is easy for businesses to utilize and modify the
code[3]. It was built to provide a common infrastructure
for computer vision applications and to reduce computing
and development time. OpenCV includes more than 2500
optimized algorithms to recognize faces, detect objects,
classify actions in videos, track camera movements, track
moving objects, extract 3D models from objects, produce
3D point clouds and many more.

2.1. Platforms

OpenCV has native interfaces for:

• C++
• C
• Python
• Java
• MATLAB

on Windows, Linux, Android, iOS and MacOS. There are
wrappers for other languages built by the community
but they are not officially supported. OpenCV aims for
real-time vision application and has therefore support
for both CUDA and OpenCL[4]. Using the CUDA
implementation can boost the applications performance by
up to 30 times for primitive image processing and up to
seven times for stereo vision.

www.juniorjournal.org Short Journal Name, 2014, Vol. No, No:2014 1

http://creativecommons.org/licenses/by/3.0

3. The current implementation

In the version for the 2014 Botballcompetition the
camera-library enables a mechanism called Blob tracking
to identify objects.

3.1. Blob tracking

The Blob tracking as it is implemented in the current KIPR
Link firmware searches images for regions with one of the
configurable colors. The found regions are referred to as
Blobs. The library builds a bounding-box around those
blobs and makes the following functions available:

• int get_channel_count(void)

• int get_object_count(int channel)

• char* get_object_data(int channel, int object)

• int get_object_data_length(int channel, int object)

• double get_object_confidence(int channel, int object)

• int get_object_area(int channel, int object)

• rectangle get_object_bbox(int channel, int object)

• point2 get_object_centroid(int channel, int object)

• point2 get_object_center(int channel, int object)

3.1.1. Object confidence

As the recognition is highly dependent on the lightning
conditions an object usually can not be distinctively
classified. Hence, the library use a confidence level
between 0 and 1 to describe how significant the object is
in the channel. In Fig. 1 the object confidence expresses
the green blobs area in relation to its bounding box.

3.1.2. Object center vs. Object centroid

a b

c

d

Figure 1. A schematic view of an image processed by the
libkovan.

Fig. 1 shows the difference between the center of an object
c and the centroid b. The center is the geometric center of
the bounding box d where the centroid is the center of the
blob a. The centroid should be preferred over the center
because it is more accurate in terms of finding the blobs
position.

3.2. Hue Saturation Value model[5]

Unlike the well known RGB model the HSV model uses
only one numeric value to describe a color[6].

Hue

Hue is the representation of the pure color around the
color-wheel as seen in Fig.2. Usually hue is expressed as
the degree on the wheel starting with red at 0 and moving
clockwise with yellow at 60 degrees, green at 120 degrees,
cyan at 180 degrees, blue at 240 degrees and magenta at
300 degrees.

red

yellow

green

cyan

blue

magenta

Figure 2. Hue is representation of colors around a color-wheel.

Saturation

As depicted in Fig. 3 the saturation describes how white
the color is. Pure red has a saturation of 1, tints of red have
saturations less than 1 and white has a saturation of 0.

Figure 3. The hue is 0 for all four squares where the saturation is
1, 0.75, 0.25, 0 from left to right.

Value

Value is also called lightness. This value describes how
dark a color is with 0 for black and increasing values the
lighter a color becomes.

3.3. Problems of the Blob tracking library

Even though the Blob tracking does a fairly good job it is
not perfect. The biggest problems are as follows.

Very dependent on lighting conditions

The Blob tracking library applies the saturation and value
values in addition to the hue color. This is intended to
raise the precision of the object recognition but it makes
it dependent to the lighting conditions.

2 Short Journal Name, 2014, Vol. No, No:2014 www.juniorjournal.org

The bounding box

The bounding box makes it easy to access an objects
location and size but it gets unprecise when the objects
shape is different from a rectangle.

Ignoring shapes

Certain scoring items do have the same color but have a
different form. It is hardly possible to distinct a circle from
a rectangle using the botball library.

3.4. Improving Blob tracking

The problems mentioned in 3.3 can be solved using only
software which is already installed on the KIPR Link.
Some of this can even be done using the Blob tracking
library.

Light independent color recognition

This is technically impossible but the Blob tracking library
can be improved by creating a custom library which
simply ignores the saturation and value. It only searches
for certain colors and not tints of them. An implementation
is depicted in listing 1. The result of this code is shown in
Fig. ??.

Listing 1. This code captures a frame from the default camera
and detects red shapes.

i n t main (i n t argc , char * * argv)
{
// camera−device
VideoCapture cap (0) ;
Mat img_scene ;
Mat hsv ;
Mat processed ;
// records a frame from the camera
cap >> img_scene ;
// converts the frame from bgr to hsv
cvtColor (img_scene , hsv , CV_BGR2HSV) ;

inRange (hsv , S c a l a r (0 , 1 6 0 , 6 0) ,
S c a l a r (2 0 , 2 5 6 , 2 5 6) , processed) ;

imwrite ("Thresh.png" , processed) ;
imwrite ("color.png" , img_scene) ;

}

Recognizing an objects shape

There are different approaches which require different
software and programming skill levels. Two of them are:

Determining an objects shape using the Blob tracking library

The majority of scoring items are rectangles or circles. Fig.
5 shows that a circle and a rectangle can have the same
center, centroid and bounding box even though they are
completely different objects. The only difference is the
confidence level which is around 100% for the rectangle
and is about 85% for the circle. These 85% are calculated
as follows:

ABoundingBox = (2 ∗ r)2 (1)

(a) The image shows typical Botball scoringitems recorded with
a KIPR Link and the provided camera.

(b) This image is processed using the source code from 1

Figure 4. A comparison of the original image a and the processed
image b

ACircle = r2 ∗ π (2)

C = (ABoundingBox − ACircle) ∗ 100 (3)

C = (((2 ∗ r)2)− (r2 ∗ π)) ∗ 100 (4)

C = (4 − π) ∗ r2 ∗ 100 (5)

C = 85.84 (6)

Figure 5. Both bounding boxes are the same size but the circle
does not fill the entire bounding box. This difference can be
detected using the confidence property.

Determining an objects shape using OpenCV

The following list shows some possibilities to detect
objects using OpenCV:

www.juniorjournal.org AUTHOR LIST:
Opening OpenCV

3

• Feature-matching

• Haar-training

• Line transformation

• Cirlce transformation

• Edge - Detection

All of the above operate on grayscale images.

Edge - Detection

Edge - Detection makes it easy to recognize an objects
shape. It also increases an applications performance
because the images get converted into binary images1.

Figure 6. Canny Edge - Detection applied to an image of the
botguy.

The Canny Edge Detector[7]

The Canny Edge Detector was developed by John F. Canny
in 1986 and is also known as the optimal detector. The
Canny algorithm aims to satisfy three main criteria:

• Low error rate: Meaning a good detection of only
existent edges.

• Good localization: The distance between edge pixels
detected and real edge pixels have to be minimized.

• Minimal response: Only one detector response per
edge.

Workflow of an edge - detection application

The first step is converting the color image into a grayscale
image. This helps to reduce the needed computing time.

The second step is to filter noises by applying a blur2. After
that the Canny function from the OpenCV library can be
applied. An implementation of this workflow is shown in
listing 2.

Listing 2. This code captures a frame from the default camera,
blurs it and applies a Canny edge detection.

i n t main (i n t argc , char * * argv)
{
// camera−device

1 A binary image contains only two colors - usually black and white.
2 usually a Gaussian Blur

VideoCapture cap (0) ;
Mat img_scene ;
Mat gray ;
Mat edges ;
// records a frame from the camera
cap >> img_scene ;
// converts the frame from bgr to gr ay sc a l e
cvtColor (img_scene , gray , CV_BGR2GRAY) ;
//blur the image
blur (src_gray , detected_edges , S ize (3 , 3)) ;
//apply the edge−d e t e c t i o n
Canny (gray , edges , 100 , 300 , 3) ;

imwrite ("Edges.png" , edges) ;
}

Hough Circle Transform[8]

To define a cirle three parameters are needed.

• X center

• Y center

• radius

For sake of efficiency, OpenCV implements a detection
method slightly trickier than the standard Hough
Transform: The Hough gradient method.

To make the detection more stable the image should
already be thresholded using an edge-detector.

Listing 3. This code captures a frame from the default camera,
blurs it and applies a Canny edge detection. The tresholded image
is then applied a circle-transform.

i n t main (i n t argc , char * * argv)
{
// camera−device
VideoCapture cap (0) ;
Mat img_scene ;
Mat gray ;
Mat edges ;
vector <Vec3f > c i r c l e s ;
// records a frame from the camera
cap >> img_scene ;
// converts the frame from bgr to gr ay sc a l e
cvtColor (img_scene , gray , CV_BGR2GRAY) ;
// blur the image with a kernel of 3
blur (src_gray , detected_edges , S ize (3 , 3)) ;
// apply the edge−d e t e c t i o n
Canny (gray , edges , 100 , 300 , 3) ;

// Apply the Hough Transform to f ind the c i r c l e s
HoughCircles (edges , c i r c l e s , CV_HOUGH_GRADIENT,

1 , edges . rows /8 , 200 , 100 , 0 , 0) ;

// Draw the c i r c l e s detec ted
for (s i z e _ t i = 0 ; i < c i r c l e s . s i z e () ; i ++)
{

Point c e n t e r (cvRound (c i r c l e s [i] [0]) ,
cvRound (c i r c l e s [i] [1])) ;

i n t radius = cvRound (c i r c l e s [i] [2]) ;
// c i r c l e c e n t e r
c i r c l e (img_scene , center , 3 , S c a l a r (0 , 2 5 5 , 0) ,

−1, 8 , 0) ;
// c i r c l e o u t l i n e
c i r c l e (img_scene , center , radius , S c a l a r (0 , 0 , 2 5 5) ,

3 , 8 , 0) ;
}
imwrite ("Circles.png" , img_scene) ;

}

4 Short Journal Name, 2014, Vol. No, No:2014 www.juniorjournal.org

The code in listing 3 demonstrates how to detect circles in
an image. The detected circles are then overlayed on the
original image. Fig. 7 shows an image as it is generated by
the code listing.

Figure 7. The detected circle is drawn onto the recorded image.

4. Alternatives to Blob tracking

Finding an object in an image is like telling a human what
he has to look for. This is usually done with descriptions
e.g. "The Botguy has a rectangular body and two round
wheels on the bottom." Unfortunately it is very hard for
robots to understand a natural language3. Hence the
objects have to be described in a different way.

4.1. Feature-matching

A common way of describing an object for image analysis
is feature description.

4.1.1. Features

At the moment there is no exact definition of what a feature
is. A feature can be treated as an "interesting" part of
an image. The following types of image features can be
distinguished:

• Edges

• Corners

• Blobs

• Ridges

4.1.2. Feature Detector

The most important part of feature matching is the feature
detector because it is the base for any further computation.
Therefore a stable, fast and reliable algorithm is essential.
A very common detector is the SIFT4 detector. Even
though it is not free the better choice is the SURF
detector[9].

3 e.g. english
4 Scale-invariant feature transform

Speeded Up Robust Feature

Compared to SIFT, SURF is several times faster and is
claimed to be more robust against image transformation.
An application of the algorithm is patented in the U.S.

4.2. Cascade Classifiers

Cascading is a multiple stage identifier. This increases
the performance which makes it possible to use this
mechanism in real time applications. Cascading is also
reliable with a very low false detection rate. The first
use for Cascade Classifiers was introduced in 2001 by
Paul Viola and Michael Jones to implement real time
face-tracking on low power devices[10].

The basic algorithm

The algorithm for all rectangles in the images can be
summed up as follows:

• Stage 1: According to classifier 1 is there an object in the
rectangle? If yes: continue; If no: there is no object

• Stage 2: According to classifier 2 is there an object in the
rectangle? If yes: continue; If no: there is no object

• ...

• Stage n: According to classifier n is there an object in
the rectangle? If yes: continue; If no: there is no object

The question if there is an object is answered by weak
learners. None of them can classify an object by itself but
they are expressive enough when they are combined to
classify any object.

Stage properties

To get a good overall performance each stage must
validate all objects. For example: If stage 1 has a
false negative rate of 20% the overall detection rate can
not be higher than 80% whatever classifiers are applied
afterwards.

This concludes that a good classifier should accept all
positives but does not have to reject all negatives as
there follow other classifers which eliminate the negatives.
Speed is also more important than a good negative
detection rate as it makes it possible to apply more
classifiers in the same time.

The first detector of Viola & Jones had 38 stages, with
1 feature in the first stage, then 10, 25, 25, 50 in the
next five stages, for a total of 6000 features. The
first stages remove unwanted rectangles rapidly to avoid
paying the computational costs of the next stages, so that
computational time is spent analyzing deeply the part of
the image that have a high probability of containing the
object.

Feature types and evaluation

The features employed by the detection framework
universally involve the sums of image pixels within
rectangular areas. Because they rely on more than one
rectangle they are more complex than features used within

www.juniorjournal.org AUTHOR LIST:
Opening OpenCV

5

the Haar basis function. A features value is always
calculated as the sum of pixels in the clear area subtracted
from the sum of pixels in the shaded area.

a b

c d

Figure 8. The four feature types as they were defined by Viola
and Jones.

Rectangular features are primitive compared to other
alternatives like steerable filters[11]. Their result is
coarser although they consider horizontal and vertical
features. The main benefit of rectangular features is their
constant time in evaluation in integral images compared to
sophisticated alternatives. The four feature types as they
were defined by Viola and Jones are depicted in Fig. 8.

Integral images

Integral images5 are used for fast calculation of sums of
pixels inside rectangular areas.

4.2.1. Cascade classifiers in OpenCV

Although cascade classifiers are complex in theory it is
easy to use them as it is only one function call inside
OpenCV. The detectMultiScale function does all the work
of detecting the objects by applying the features defined in
a XML-file. OpenCV does already have a configuration file
for face detection and comes with all the functions needed
to create custom configurations.

4.2.2. Creating your own cascade classifiers

This process is also called Haar-training and it needs two
kinds of images to work:

• positive samples: These images contain the object

• negative samples: These images do not contain the
object

The first step is to record those images. It is a good
practice to organize the images in two folders (positives,
negatives). After that a list of files should be created. The
list of positive images is slightly different from the list of
negatives as it does not only contain the file names but
also the amount of objects in the image and their location.
To achive good results you should use between 1000 and

5 a.k.a Summed area table

3000 positive samples and about twice as many negative
samples. The more samples you use the more precise the
classifier will be but it causes an significant increase of time
for the training process.

Listing 4. This is an example of the file contents for positives and
negatives.

negat ives :
images/negat ives/img1 . jpg
images/negat ives/img2 . jpg
images/negat ives/img3 . jpg
. . .

p o s i t i v e s :
images/ p o s i t i v e s /img1 . jpg 1 0 0 240 320
images/ p o s i t i v e s /img2 . jpg 1 0 0 240 320
images/ p o s i t i v e s /img3 . jpg 1 0 0 240 320
. . .

As depicted in listing 4 the list of positives is structured as
follows: image-path amount-of-objects object1-x object1-y
object1-width object1-height object2-x ...

The next step is to create samples out of the given images.
This should be done using the opencv_createsamples
programm which is included in the OpenCV
installation[12]. This program transforms and rotates
the input images to increase the amount of training
images and therefore improve the classifiers precision.
This program produces a .vec file which contains all the
information for the last step.

The last step is the opencv_haartraining program. This
produces the xml-file used by the detectMultiScale function.
This process can take several hours to finish.

5. 3 Dimensional Botball

The recently added 3D-sensor can help to build incredible
robots. As the recorded depth-images of the 3D-sensor can
be treated as grayscale images they are easy to process. All
of the tools needed to detect three dimensional shapes are
already installed on the KIPR Link. All of the possibilities
of Chapter 4 Alternatives to Blob tracking can be used
on the 3D images as well. The Botball vision library
still has enough space for improvements but it is really
sophisticated compared to the 3D vision library.

6. Conclusion

A custom vision library has a lot of features which are not
present in the standard library. Most of them are complex
and require certain knowledge of machine learning. The
basic features can be customized to be more stable in
special cases.

At the moment the KIPR Link ships with some handy tools
which can be powerful in combination with a camera. But
the highest level of object recognition can be achieved if
the 2D color image is combined with a 3D image. This is
not only fun to play with but also the next step into the
future of robots.

7. References

[1] The botball camera. http://www.buyincoins.com/item/1891.html,
March 2014.

6 Short Journal Name, 2014, Vol. No, No:2014 www.juniorjournal.org

[2] Opencv homepage. http://opencv.org, February
2014.

[3] Bsd license. http://www.linfo.org/bsdlicense.html,
February 2014.

[4] Cuda support. http://opencv.org/platforms/cuda.html,
February 2014.

[5] The hsv model. http://smoumie.blogspot.co.at/2013/12/hsv-preferred-color-model-of-computer.html,
March 2014.

[6] The rgb model. https://www.princeton.edu/ achaney/tmve/wiki100k/docs/RGBcolormodel.html, March2014.
[7] The canny edge detector explained.

http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/cannydetector/cannydetector.html, March2014.
[8] http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/houghcircle/houghcircle.html, March2014.
[9] Tinne Tuyellars Herbert Bay and Lue Van Gool. Surf:

Speeded up robust features.
[10] Paul Viola and Michael Jones. Robust real-time object

detection. In International Journal of Computer Vision, 2001.
[11] W. T. Freeman and E. H. Adelson. The design and use of

steerable filters. IEEE Transactions on Pattern analysis and
machine intelligence, 13:891Ű906, 1991.

[12] Haar training tutorial. http://note.sonots.com/SciSoftware/haartraining.html,
March 2014.

www.juniorjournal.org AUTHOR LIST:
Opening OpenCV

7

	Introduction
	Open Source Computer Vision LibraryOpenCV
	Platforms

	The current implementation
	Blob tracking
	Object confidence
	Object center vs. Object centroid

	Hue Saturation Value modelHSV
	Problems of the Blob tracking library
	Improving Blob tracking

	Alternatives to Blob tracking
	Feature-matching
	Features
	Feature Detector

	Cascade Classifiers
	Cascade classifiers in OpenCV
	Creating your own cascade classifiers

	3 Dimensional Botball
	Conclusion
	References

