
Driving in a Straight Line accurately
Böhler Fabian, Fellner Christoph, Griesmayer Verena, Groiß Simon, Kawicher Sebastian

Department for Computer Science
Secondary Technical College

Wiener Neustadt, Austria
Email: anubis.airlab@gmail.com

Abstract—Driving in a straight line with the KIPR
Wallaby is a challenge. Therefore, we compared six
different methods for accurate driving. This includes
multiple programs using a Kalman filter and a PID
controller to manipulate either the compass values
or the motor ticks. We used a simple hardcoded
method as a reference to evaluate the efficiency. The
goal of this paper is to determine which of these
methods is the most accurate by comparing them in
an experiment.

I. INTRODUCTION

While practicing for the Botball contest we no-
ticed that for driving a certain distance, hardcoding
is not always the best solution due to its inac-
curacy. We thought about using a Proportional-
integral-derivative (PID) controller to improve ac-
curacy. We asked ourselves which implementation
of various PID controllers is the most precise
and if a Kalman filter can be used to maximize
precision.

A. Hardware

Fig. 1. The controller includes 10 digital sensor ports, 6 analog
sensor ports, 4 motor ports and 4 servo ports. There is also a
built in compass.

The controller system used in the experiments
in this paper is KIPR Wallaby. See figure[1].

II. KALMAN FILTER

The Kalman filter [2] is a technique for esti-
mating values by multidimensional normal distri-
butions of erroneous observations. In this case the
Kalman filter is used to reduce the errors of the
measurements. After each new measurement, the
Kalman filter improves the previous estimates and
updates the associated error estimates.

The Kalman filter is used in different industries,
such as the computer industry and spacecraft in-
dustry.

III. PID CONTROLLER

The PID controller (Proportional-Integral-
Differential controller)[3] is a transmission
element of control engineering. It is composed
of parts of a ”P” component, an ”I” component
and a ”D” component. Although PID controllers
are hard to accurately calibrate, they do offer
some advantages. The P element ensures a
fast response, the I element can completely
compensate for the control deviation, and the D
element enables fast readjustment in the event
of sudden disturbances. The formula of the PID
controller can be seen in the equation 1.

u(t) =

Proportional︷ ︸︸ ︷
Kpe(t) +

Integral︷ ︸︸ ︷
Ki

∫ t

o

e(τ)dτ +

Derivative︷ ︸︸ ︷
Kd

d

dt
e(t)

(1)

Fig. 2. PID equation

A. P component (Proportional)

The P component consists exclusively of a
proportional part of the gain Kp. With its output
signal u it is proportional to the input signal e.
The P component will also trigger an immediate
change of the manipulated variable, but its effect is
initially not as dominant as that of the D element.
On the other hand, the proportional effect remains
constant in time.

B. I component (Integral)

An I component acts by time integration of the
control deviation e(t) on the manipulated vari-
able by weighting the reset time. With increasing
duration, the part of the I element comes into
play which controls the system without permanent
control deviation.

C. D component (Derivative)

The D component is a differentiator which is
only used as a controller in connection with P
and/or I controllers. It does not react to the amount
of the control deviation e(t), but only to its rate of
change. If there is an abrupt change in the control
deviation, the control of the D element (which
reacts to the change in the control deviation)
comes to the fore and ensures a rapid reduction
in the control deviation.

IV. IMPLEMENTATION

For measuring the deviation we used a software
which detects the Aruco marker[4] on our bot,
as shown in figure 4. The values of the different
recordings have been recorded and visualised in
two Graphes, one for visualising the deviation in
Centimeters and one for visualising the deviation
in degrees. For testing, we compared six different
algorithms.1

A. Hardcoded

First we implemented the classic hardcoded
variant. As the motors by themselfs are not very
accurate, instructing the robot to drive a straight
line will result in the robot diverging from its
intendet path. As the hardcoded variant does not
compensate for this error, the robot will sigifi-
cantly stray away from its path.

1The corresponding code is available at: [5]

B. PID on motor values

To improve accuracy we used the ticks of the
motor in combination with a PID controller to
estimate which one is turning faster and balance
the driving.

C. PID on motor values + Kalman filter

To get even more precision we used a Kalman
filter together with the PID. The code can be seen
in 1

motors Kalman filter PID controller
motor ticks filtered ticks

motor commands

Fig. 3. Overview of communication between components

1 // P component
2 double P = 15.0;
3 // I component
4 double I = 1.0;
5 // D component
6 double D = 0.5;
7

8 // Initialisation
9 // of the PID controller

10 PID pid = PID(&error,
11 &out,
12 P,
13 I,
14 D);
15

16 // Processed motor ticks
17 // with a Kalman filter
18 double rd = filter(R_ticks());
19 double ld = filter(L_ticks());
20 error = ld - rd;
21

22 pid.Compute()
23

24 power(lMotor, speed + out);
25 power(rMotor, speed - out);

Listing 1: example code of implemented approach
C using the motor ticks and a PID controller

D. compass with a PID controller

We also implemented a program that uses the
orientation of the built in compass to adjust the
rotation of the robot while driving. We used PID
controller to get more accurate values. We expect
this to result in even more precise driving than
moving with motor ticks.

E. compass with a PID + Kalman filter

Furthermore we wanted to know if the accuracy
will improve, if we process the compass values
with a Kalman filter. We expect this to work better
than without a Kalman filter.

F. PID + Kalman filter on motors and compass

At last we used both, the compass and the motor
values as reference. We expect this to be the most
accurate implementation because of the use of
both the compass and the motor ticks.

Fig. 4. Starting position of the robot, next to the stationary
Arucotag, which enables measuring the deviation from the
straight path(in red)

V. EXPERIMENT

For testing we used a robot with an Aruco
marker on top and a second stationary one
as seen in figure 4. We use these markers
to track the movement of the robot. We then
started the programs we wanted to test. During
these experiments another program recorded the
positions of the robot every 33 milliseconds
using the video-stream of a camera. With these
positions we evaluated the deviation in cm and
degrees and transferred these values into the
graphs in figure 5 and figure 6.

1 // get the reference angle
2 // for the compass
3 double start = get_compass();
4

5 // [...]
6

7 double speed = 70;
8 // P component
9 double P = 0.8;

10 // I component
11 double I = 1.0;
12 // D component
13 double D = 0.5;
14

15 // Initialisation
16 // of the PID controller
17 PID pid = PID(&error,
18 &out,
19 P,
20 I,
21 D);
22

23 // Threshold for the PID
24 // controller to kick in
25 double th = 5.0;
26 double angle = get_compass();
27

28 // Calculate the difference
29 // between the current and
30 // the starting angle
31 error = angle - start;
32

33 if (diff < -th ||diff > th) {
34 pid.Compute()
35 power(lMotor,speed + out);
36 power(rMotor,speed - out);
37 } else {
38 power(lMotor, speed);
39 power(rMotor, speed);
40 }

Listing 2: example code of approach D using the
compass with a PID controller

0 20 40 60 80 100 120

0

5

10

15

20

driven distance / cm

de
vi

at
io

n
/

cm

Fig. 5. Graph depicting the deviation in Centimeters from the
straight path during the various experiments

0 20 40 60 80 100 120

0

5

10

15

20

driven distance / cm

de
vi

at
io

n
/

de
gr

ee

Fig. 6. Graph depicting the deviation in degrees from the
straight path during the various experiments

Legend:
hardcoded
compass with a PID
PID + Kalman filter on motors and compass
compass with a PID + Kalman filter
motors with a PID
PID + Kalman filter on motors

VI. CONCLUSION

As seen in figure 5 and figure 6, the hardcoded
way to drive straight performed the worst, due
to its high inaccuracy as expected. Furthermore,
driving only with a PID controller on the motor
values is also not very accurate. The difference
between using the compass with PID and using the

compass with PID and Kalman filter was greater
than expected. Using a PID controller, compass
and Kalman filter surprisingly gave the third worst
result, while using a compass with only a PID con-
troller turned out to be the most accurate method.
However, efficiency is not only about accuracy
but also about the reliability of a code. Since
any algorithm with the compass is inconsistent
and laborious to calibrate compared to the other
methods, the variant with a PID controller and the
compass is the most accurate but not the most
efficient. Due to our findings we conclude that, the
most efficient method is using the PID controller
in combination with a Kalman filter processing the
motor ticks, because the difference in accuracy to
a method with compass and PID is relatively small
but much more reliable.

VII. ACKNOWLEDGMENT

The authors would like to thank Dr. Michael
Stifter for the great support in realizing this
project. We would also like to thank all the roboti-
cists who helped us with this paper, special thanks
to Joel Klimont who helped us implementing the
software we used for the measurements in the
experiment.

REFERENCES

[1] KIPR, Wallaby Controller,
https://www.kipr.org/kipr/hardware-software, store page,
accessed March 18th 2022

[2] Kalman filter,
https://perso.crans.org/club-krobot/doc/kalman.pdf, infor-
mation page, accessed March 18th 2022

[3] PID,
https://www.researchgate.net/profile/Robert-Paz-2/
publication/237528809 The Design of the PID
Controller/links/004635360fa1ebdf63000000/
The-Design-of-the-PID-Controller.pdf, information
page, accessed Januar 14th 2022

[4] Aruco marker,
https://docs.opencv.org/4.x/d5/dae/tutorial aruco
detection.html, information page, accessed March
18th 2022

[5] GitHub Repository,
https://github.com/DuSack1220/anubis paper 2022
source code, accessed March 18th 2022

https://www.kipr.org/kipr/hardware-software
https://perso.crans.org/club-krobot/doc/kalman.pdf
https://www.researchgate.net/profile/Robert-Paz-2/publication/237528809_The_Design_of_the_PID_Controller/links/004635360fa1ebdf63000000/The-Design-of-the-PID-Controller.pdf
https://www.researchgate.net/profile/Robert-Paz-2/publication/237528809_The_Design_of_the_PID_Controller/links/004635360fa1ebdf63000000/The-Design-of-the-PID-Controller.pdf
https://www.researchgate.net/profile/Robert-Paz-2/publication/237528809_The_Design_of_the_PID_Controller/links/004635360fa1ebdf63000000/The-Design-of-the-PID-Controller.pdf
https://www.researchgate.net/profile/Robert-Paz-2/publication/237528809_The_Design_of_the_PID_Controller/links/004635360fa1ebdf63000000/The-Design-of-the-PID-Controller.pdf
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://github.com/DuSack1220/anubis_paper_2022

	Introduction
	Hardware

	Kalman filter
	PID controller
	P component (Proportional)
	I component (Integral)
	D component (Derivative)

	Implementation
	Hardcoded
	PID on motor values
	PID on motor values + Kalman filter
	compass with a PID controller
	compass with a PID + Kalman filter
	PID + Kalman filter on motors and compass

	Experiment
	Conclusion
	ACKNOWLEDGMENT
	References

