
Grabber Designs and Software Solutions for the
KIPR Wallaby

David Fischer, Alexander Brenner, Sascha Nesterovic, Karl Forstner, Marko Miletic, Jan Giefing and Rafael Schreiber
Technical Secondary College

Department of Computer Science
2700 Wiener Neustadt, Austria

Corresponding author Email: fischer.david@student.htlwrn.ac.at

Abstract—Grabbers are one of the most essential parts in
winning a Botball tournament, and so is the software running on
the bots. In this work, we want to introduce different simple but
expandable grabber designs and software programmed with the
current Botball kit in mind. We wanted to make using everything
mentioned as easy to understand and implement as possible so
newcomers will have an easier time getting into Botball. Early
on having these kinds of resources as a team can help eliminate
various issues and speed up the development process overall.

I. INTRODUCTION

Participation in a Botball tournament requires a Botball kit,
which is a carefully selected collection of LEGO and metal
parts, sensors and servos. The kit’s main components are:

• Two KIPR Wallaby controllers
• The iRobot Create 2®Programmable robot
• LEGO Technic bricks as well as some metal parts
• Various motors and Sensors

A combination of all these parts will allow one to build a
construction, which should be able to complete a majority
of the tasks on the game table. Before building the robot,
the developers and engineers should work together closely to
plan a basic structure with an easy and repairable design that
fits the programmer’s needs. Solving problems during the
building phase is much easier than during the programming
phase, therefore teamwork and clear communication during
this period are crucial. The Botball kit provides a wide range
of possibilities concerning the bot’s construction, so there are
always multiple options to complete the different assignments
on the game table. Of course, it is often difficult to come up
with creative designs for these tasks, therefore we constructed
three different types of basic grabbers and demonstrated
their implementation onto the bots. Troubleshooting during
development is also challenging, that’s why we designed a
way to check a servos integrity using only the Wallaby’s
integrated gyro sensor. In order to allow quick development
and testing for these purposes, we developed remote-compile,
an efficient and easy-to-use interface for compiling and
running code on the Wallaby. For an explanation of its
functions and other features see section IV.

II. GRABBER INNOVATION AND EXAMPLES

Since the game table varies every year, we constructed
and tested three simple but efficient grabbers that fit most
of the game tables reoccurring objects, like the botguy and
basic cubes. These grabbers are very straightforward to build,
and are perfect for Botball beginners. Most of the grabbers
require a servo, cogwheels and some LEGO parts, which are
all contained within the standard Botball kit.
We made blueprints for the grabbers in the LEGO Digital
Designer [1], a program, which can be downloaded from the
official LEGO website and makes for a great and easy-to-learn
tool for planning constructions virtually.

A. Gravity grabber

Fig. 1: Virtual gravity grabber. Since LDD doesn’t feature
rubber bands the spots which are meant to be connected are
marked in red.

There is a limited number of servos in the Botball kit,
therefore we felt the need to develop an entirely servo-less
but still functional grabber. This is why we constructed the
gravity grabber as an alternative to the usual grabber concepts.
When grabbing from above, the grabber’s left and right bars
are pressed inwards, so that the object can fit into the grabber.
After the object has moved to a position where the rubber
bands are able to pull back the two bars, it is locked in place
and the grabber won’t be able to drop the object. This design
has some obvious flaws, but it’s perfect for placing the botguy
in the baskets from 2018’s game table. Its size is about 3.1 by
5 inches and its span length measures about 4 inches.

See Fig. 2 and 3 to see a demonstration of the grabber’s
grip on the botguy and a small cube.



Fig. 2: The gravity grabber
grabbing a botguy.

Fig. 3: The gravity grabber
grabbing a small cube.

B. Horizontal grabber

Fig. 4: Virtual horizontal grabber from behind. The servo
should be mounted at one of the middle two cogwheels

Our horizontal design is a basic grabber constructed to
perfectly fit the botguy’s shape. It is one of the most basic
but efficient grabbers, which makes it very common at Botball
events. It is best used from the side around the botguys neck,
where it excels at providing a very secure grip. The grabber
consists of four cogwheels and one servo which is mounted
at one of the middle two wheels. This grabbers weakness are
poms since the only option is pushing them and picking them
up reliably is almost impossible. To pick up cubes, this design
would have to be scaled up which would reduce the amount
of grip on the botguy. Its size is about 4.5 by 3.1 inches, its
span length is about 7.5 inches.

For our setup see Fig. 5 and 6, which show the grabber’s
grip on the botguy. The optimal amount of servo strength in
our setup for the tightest grab is about 78.5 percent.

Fig. 5: Horizontal grabber
grabbing a botguy.

Fig. 6: Front view.

C. Vertical grabber

Fig. 7: Virtual vertical grabber. Servo should be mounted at
the bottom cogwheel

A vertical grabber constructed to fit most of the basic cubes
and poms on the game table. This grabber is built to push and
drag around objects like poms and cubes. Its concept is similar
to an excavator since with the grabber’s claw-like design it is
best to lower the claw on top of the objects and drive backward
to move them to a different location. This works best on cubes
and small groups of poms. Its size is about 4.8 by 5 inches,
its span length is about 3.1 inches, and the optimal grip is
achieved by pushing the grabber on the floor.

See Fig. 8 and 9 for a demonstration of the grabber’s grip
on poms and a small cube.

Fig. 8: Vertical grabber with
poms.

Fig. 9: Vertical grabber with
a cube.

D. Using grabbers

Since these highly customizable grabber designs can be
implemented into almost any bot or on any claw arm, we hope
this section can, above all, help new teams get an idea on what
makes a good grabber. Blueprints for all of the grabbers can
be found online [2].

III. THE WALLABY’S GYRO SENSOR

The Wallaby contains an integrated gyro sensor [3] which
measures values in a 3-dimensional space in the directions x,
y, and z. This dataset of three values provides an estimate on
how the bot is currently moving. KIPRs libWallaby includes
four functions that return the gyro’s output.

• int gyro_calibrate(): Initiates the gyrometer’s
calibration

2



• signed short gyro_x(): gets the detected x motion
returns the latest signed x motion value

• signed short gyro_y(): gets the detected y motion
returns the latest signed y motion value

• signed short gyro_z(): gets the detected z motion
returns the latest signed z motion value

See Figure 10 to get an idea on how the gyro sensor responds
to motion on the y-axis.

V alue gyro− y

0(No Movement)

200 (Moved Upwards)

Time

−200 (Moved Downwards)

Fig. 10: Graph showing the gyro’s output when first moved
upwards and then downwards along the y-axis.

Even though the gyro sensor has no obvious applications
in Botball, there are multiple uses for it. Our basic idea was
to develop code that can detect a claw arms fluctuations and
check if the servos used to mount the arm are still working
smoothly. To confirm the validity of our consideration, we
performed the following experiment using a basic claw arm.

Fig. 11: iRobot Create and Wallaby with the gyro setup in
place. Moving the claw arm makes the gyro return data.

The claw arm in Fig. 8 is the same our team used during
the ECER 2018 Open competition. To complete the setup,
we would have to place an igus chain inside the claw arm
between the servos and mount a grabber on the chains tip.
By reading the gyro sensor’s y-coordinate output, the bot can

calculate if the claw arm has moved upwards or downwards
using a simple function. If the y-coordinate is static between
-30 and 30, then one may assume that the servos are defective
and have not fulfilled their tasks. When the Wallaby moves
upwards, the y-coordinate changes to up to 500, moving
the Wallaby downwards changes the variable to -500. If the
Wallaby is motionless, the y-coordinate varies between about
-30 and 30.

To demonstrate this, we wrote the following code snippet,
which moves the claw arm and checks the servos integrity
afterward using data from the gyro sensor.

// this program assumes that the Wallaby
// is mounted on the claw arm
int maxValue = 500;
int minValue = -500;

int minStand = -30;
int maxStand = 30;

int servo0 = 0;
int servo1 = 1;

int timeInMs = 1000;

int main(){
servoDown(2, 3);

}
// changes the claw arms servo position
bool servoDown(int position0, int position1){

while (gyro_y() < maxValue && gyro_y() >
maxStand){
//chanching servo position
set_servo_position(servo0, position0);
set_servo_position(servo1, position1);
msleep(timeInMs);
if(gyro_y() > minStand && gyro_y() <

maxStand){
// if the Wallaby thinks that there
// was no movement false is returned
// to indicate the broken servos
return false;

}
}
return true; // if the Wallaby moved

}

A solution like this can also be applied to a wire rope
hoist construction to determine the Wallaby’s current position
without using a click sensor.

IV. REMOTE-COMPILE

A. Introduction

Currently testing and running all the different programs
written for the Wallaby is a bit tedious and slow, therefore in
this section, we want to introduce remote-compile: a compact
program that allows one to remotely compile and run a
program on the Wallaby.
We have developed remote-compile to solve Harrogate’s [4]
biggest problems:

3



• Speed: The Wallaby is not the fastest controller, that
is why we decided to write a lightweight program to
compile our projects. In our opinion, the current system is
objectively flawed and puts too much load on the Wallaby,
which slows it down significantly.

• Individuality: Programmers want to work in their favorite
IDE, since it might feature more functionality than Har-
rogate, like typing suggestions or debugging.

• Customisability: Harrogate only has one Interface and
is unable to interact with other programs. With remote-
compile, the client can be written in any language because
of its fully featured and documented API.

• Security: Harrogate doesn’t support any authorization, as
a consequence everyone in the Wallaby’s network can
access the Wallaby’s projects and has the possibility to
harm or mess with them.

Thats why remote-compile was developed with speed, func-
tionality, simplicity, security and cross-platform compatibility
in mind.

B. Implementation

Remote-compile uses a self-developed protocol called
RCCP (Remote Compile Communication Protocol), which
uses TCP as the transport protocol. During development, our
main goal for RCCP was speed and expandability. The remote-
compile server runs on the end device (e.g. Wallaby) which can
be reached via a simple TCP connection. RCCP, the backend
protocol of remote-compile, works by sending a ”UNIX style”
command from the client to the server and making it respond
with a JSON string.

Fig. 12: Telnet login example with both programs running
on localhost.

The picture above shows the login process between a
client and a server running on the same machine. This style
of communication allows an efficient integration into other
programs. The JSON file format especially offers enhanced
compatibility because almost every programming language
provides standard libraries for parsing JSON data.

C. Functionality

Remote compile currently supports C, C++, and Python
code on all major platforms (Linux, macOS, Windows). On-
demand, additional languages can be implemented, thanks to
the very expandable and well documented RCCP protocol.
You can also protect access to the server with a password for
enhanced security. Likewise, remote compile is not just limited
to Botball, it may also be used for other types of projects on
almost every platform.

D. Possibilities

We think using remote-compile on the command line cur-
rently isn’t that great of an experience, thats why we also wrote
a fully featured Atom plugin [5] which interfaces with remote
compile without the users having to establish a connection
themselves. The plugin uses 3 simple shortcuts and makes
running programs on the Wallaby easier than a regular ssh
connection would. The complete documentation can be found
on the atom-remote-compile repo [6].

Fig. 13: The Atom remote-compile plugin establishing
a connection, changing the directory automatically and
running the project (notifications read from bottom to top.)

Thanks to the remote-compile API [7] a frontend imple-
mentation like this can be written for any editor or platform.

V. CONCLUSION

We hope that this publication will help new teams to get
a quicker start into Botball and provide them with valuable
resources to support their bot’s construction. Sometimes get-
ting creative is a hard task and that’s exactly why we wrote
this paper. As a team we have had these kinds of problems
in the past and getting over them definitely was a challenge.
Having issues, especially early on as a team, may lead to more
obstacles later so having a basic idea about how to start can
help a lot. Having a plan in mind before starting construction

4



is vital and our grabber presets, unmodified or not, could be
a great addition to bots on this year’s game table.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Michael Stifter for his
support throughout the work on this paper and Mag. Punz
Johann for proofreading our final draft.

REFERENCES

[1] L. A/S, “Lego digital designer.” https://www.lego.com/en-us/ldd, 2004.
[2] break, “Grabber build guides.” https://konst.fish/grabbers, 2018.
[3] B. KIPR, “libwallaby gyrometer.” http://files.kipr.org/wallaby/wallaby

doc/group gyro.html, 2017.
[4] KIPR, “Harrogate github.” https://github.com/kipr/harrogate, 2018.
[5] D. Fischer, “Atom remote-compile package.” https://atom.io/packages/

remote-compile, 2019.
[6] D. Fischer, “Atom remote-compile repository.” https://github.com/

konstfish/atom-remote-compile, 2019.
[7] R. Schreiber, “remote-compile api.” https://frontend.works/

remote-compile, 2018.

5

https://www.lego.com/en-us/ldd
https://konst.fish/grabbers
http://files.kipr.org/wallaby/wallaby_doc/group__gyro.html
http://files.kipr.org/wallaby/wallaby_doc/group__gyro.html
https://github.com/kipr/harrogate
https://atom.io/packages/remote-compile
https://atom.io/packages/remote-compile
https://github.com/konstfish/atom-remote-compile
https://github.com/konstfish/atom-remote-compile
https://frontend.works/remote-compile
https://frontend.works/remote-compile

	Introduction
	Grabber Innovation and examples
	Gravity grabber
	Horizontal grabber
	Vertical grabber
	Using grabbers

	The Wallaby's gyro sensor
	remote-compile
	Introduction
	Implementation
	Functionality
	Possibilities

	Conclusion
	References

