
MissionEDU
Expanding Educational Robotics

Daniel M Swoboda and Markus Pinter
Department for Computer Science

Secondary Technical College, HTL Wiener Neustadt
Email: i12032@student.htlwrn.ac.at

Affiliated Authors: Daniel Honies, Christoph Käferle, Florian Ungersböck, Raphael Weinfurter

Abstract—In this publication MissionEDU - an educational,
open-source system that can add support for graphical pro-
gramming (GP) to most robotics controllers - is introduced. GP
is considered the easiest way to learn computer programming
especially for K12 students and younger programming begin-
ners, being used in education for more than a decade. While
some modern robotics systems include a graphical programming
language, there is no system that focuses on education and - at
the same time - provides the same programming interface for a
greater variety of different controllers.

MissionEDU was developed as part of a diploma thesis at
Secondary Technical College HTL Wiener Neustadt and can be
considered a successor of the MissionControl program suite. It
consists of a server - running on a robotics controller, a client
for tablet PCs, and a configuration app. The system is designed
to be a self-contained solution for education meeting the needs of
robotics course curricula based on experience with the Botball
Educational Robotics Program. This publication focuses on the
technical side of the project. However, the scenarios of application
are introduced in the last section. MissionEDU was originally
developed with main focus on compatibility with the robotics
controllers KIPR Link and Wallaby, but it is planned to expand
support over time.

Index Terms—graphical programming, educational robotics,
robotics system

I. INTRODUCTION

Computer programming, software development and robotics
skills are on their way to becoming the most important abilities
to have. With the introduction of computerized systems and au-
tomation the efficiency of most industries rose. However, these
benefits often led to unemployment waves. More advanced
knowledge of computer science will be required from future
workers in order to survive in a mid 21st century industry. [1]

To counteract the growing demands for employees with
computer-knowledge and engineers a variety of different ed-
ucational robotics programs and educational programming
courses were created by various institutions [2]. Established
robotics programs like Botball or RoboCup are trying to reach
out to younger audiences through special elementary school
competitions while educational programming courses like
code.org and Scratch focus on teaching basic programming-
skills to students through the use of graphical programming
languages (GPLs) [3] [4] [5].

MissionEDU aims to combine these two concepts by cre-
ating a platform that is able to run on most modern robotics

controllers. By doing so it enables the interplay of a frag-
mented eco-system, unifies the experience across devices and
makes it easier to deploy graphical programming to existing
hardware.

This publication introduces parts that are fundamental to
the MissionEDU system and gives an overview of possi-
ble applications. The introduced parts include the Abstract
Robotics System, the server, the programming client for tablet-
PCs, the configurator client, the MiRACLE protocol, and
the MateScript programming language. The way these sub-
systems interact is depicted in Figure 1.

CommandsTasks

Client Devices Network
[MiRACLE Protocol

Messages]

Controller

Client

Abstract
Robotics
System

Server

Configurator

Commands

Results

Build Results
General Information

 Execution Results
 General Information

Commands
[Parsed from
MateScript]

Configuration Data

Fig. 1. The data flow between the sub-systems of MissionEDU

II. ABSTRACT ROBOTICS SYSTEM

The abstract robotics system (ARS) is the system that
enables MissionEDU to run on multiple controllers using the
same code-base. Its design is based on the Robotic System
Abstraction Layer (RSAL) developed for MissionControl.
While the original RSAL made use of a XML-based language
to auto-generate this platform specific code, the ARS of
MissionEDU uses a JSON format to be consistent across
all platforms. Another key difference is that the ARS is
changeable during the runtime of the server by using on-
demand recompilation. Where the RSAL parser generated C99
code, the ARS - by default - makes use of the modern C++14
standard and the features of C++. [6]

A. Concept

Since MissionEDU needs to access the robotics system of
a controller in order to control the hardware, the server has
to include platform specific code. Because of the multitude

of different robotics controllers and the inconsistency of their
firmware the server code would have to be changed for every
platform. To separate the platform specific code from the
server code and to allow the user to add their own methods
the ARS was created. The ARS acts as a middleware through
which the hardware is accessed and is therefore comparable
to the hardware abstraction layer of modern operating systems
[7].

Because the methods provided in the client app are proxies
of the compiled platform specific functions created by the
users that are stored in the ARS, it also fits the criteria of
a remote procedure call back-end.

B. ARS Communication Interface

ARS integrates with the server through the ARS commu-
nication interface (ARS-CI) - which is a minimal request-
response protocol - using unix domain sockets (UDS) as the
medium. The protocol consists of 5 different messages, 2 of
them are used for connection management, the other 3 are
used to control the ARS. The messages are transmitted ASCII
formatted and line-wise.

C. Implementation

The ARS code is generated from a C++ base program -
that implements the ARS-CI logic - and platform specific code
necessary to include the robotics system of the target platform
and user defined functions (UDFs). These UDFs can be added
by the user using the configuration application. Through it,
methods designed for the students’ tasks can be added.

D. Integration with Server

In order to make the ARS swappable during run-time the
server manages it as a subprocess. It is shut down when the
configuration client connects. After the configuration client
disconnects the ARS is restarted and normal operation is
resumed. During configuration the ARS can be changed by
the user. If the change leads to a non-compilable state it is
reverted.

III. NETWORKING PROTOCOL

A. swockets Socket Wrapper

All parts of MissionEDU use a socket wrapper library -
called swockets - specifically created for the project. swock-
ets is available for all languages that are used as parts of
MissionEDU: Python, C++ and C#. It uses the native socket
APIs of every platform to wrap TCP connections. The wrapper
is event-based and designed to only transmit JSON data. It
automatically checks the data before transmission and includes
methods for error checking and automated message stitching.
swockets supports both a server and a client mode. In the
server mode it automatically takes care of client connection
management. While message receiving is by default asyn-
chronous, it can be switched to a synchronous mode. [8]

Through the usage of self defined handlers the used protocol
can be easily implemented. [8]

B. MiRACLE Protocol

In order to guarantee a controlled flow of data and de-
fine the message formats the MissionEDU Robot Access,
Configuration Loading and Enhancing Protocol (MiRACLE
protocol) was created. MiRACLE is used for every network
based communication between the parts of MissionEDU.

edit
abstractiontask change

executing

send
command

disable config

disconnected

send list
of tasks

wait for
command

send list of
commands

setting up
config mode

Abort

Performing
Handshake

Connection
Request

state

 terminate abort

save task

[invalid]

change task
[if config]

stop exec
mode

 executed sent

exec mode
[if programming client]

[if config]

disconnect

request
abstraction

[invalid]

request abstraction
[if config]

 list sent

 list sent

connect as
programming
client

 config mode
 set up

connected as
config client

[invalid]
[invalid]

connected

active
entry

all clients
disconnected

client wants
to connect

Fig. 2. A state transition diagram of the MiRACLE protocol

1) Description: The protocol is state-based and differ-
entiates between a configuration client and a programming
client and provides different functionality on both platforms.
After a successful handshake in which the conditions of the
connection are negotiated the server sends - in both modes
- a list of all the tasks and all the functions available. In
configuration mode the ARS is shut down and the actions to
add, delete and change both functions and tasks are enabled.
In programming mode control commands can be sent by the
client which are forwarded to the server and executed by the
ARS. A state transition diagram of the protocol can be seen
in Figure 2.

To implement the protocol the swockets library was used.
2) Data Format: MiRACLE uses JSON based messages

with a consistent general structure and a different payload for
every message type (example depicted in Listing 1).

Listing 1. General structure of a MiRACLE message
{ ” MessageType ”:”< type >” ,

” Pay load ” : {<p a y l o a d d a t a f o r message type >}}

IV. SERVER

MissionEDU-Server manages client connections, handles
method execution and controls the generation and compilation
of the ARS. Similarly to the MissionControl server it is
implemented using Python 2.7 - a language available on
most Linux systems. The server is the backend of both the
programming interface and the configuration environment.

A. System Design

The MissionEDU server was designed with standard
robotics controllers in mind. These often ship with a Linux
operating system and specifications close to those of smart-
phones. [9] [10]

A server running on a robotics controller should limit its
resource usage to a minimum to not interfere with the robotics
system, especially when these systems perform heavy tasks
like computer vision. To accomplish that the server makes use
of a passive design where it only performs actions on request.
The outsourcing of the robotics system access to the ARS
here shows another advantage: Because the execution of the
robot functions is performed by the abstract robotics system
the server once again can stay passive waiting for the execution
to be finished.

It is also designed to be easily installed by using only the
standard libraries of C++ (ARS) and Python (server). This
increases the number of potential target platforms.

B. Implementation

To implement the server a language was needed that is
already available on most platforms, that has an extensive
standard library and includes a socket interface. Because of
the system design choices not only compiled languages but
also parsed languages were considerable. Since Python meets
all the criteria and is an ergonomic language it was selected.
Version 2.7 was chosen because it’s both stable and available
on most platforms [11]. Although Python 3.x is more modern
and still under active development, it is not included on the
Link or Wallaby controller, which would result in additional
installation efforts.

C. Performance

Since the server is intended to run on robotics controllers
which are - although they are becoming increasingly more
powerful - often underpowered, server performance was a key
objective of the project. The target was for the server itself to
add less than 5% of average CPU.

To analyze the performance two key indicators were chosen:
CPU and memory usage. The tested platform was the KIPR
Wallaby controller (720 MHz; 512MB RAM) used in the Bot-
ball competition since 2016. The test results were compared to
a 2012 MacBook Pro (2.3 GHz; 8GB RAM) for reference. 3
different scenarios were tested multiple times on each device:
Idle usage (graphical representation of the results depicted in
figure 3), pseudo-average load usage and compile usage.

The results of the memory analysis show a constant usage
of system memory on both systems. This implies that there
is neither a memory leak nor any unwanted allocation of
memory during idle time. The overall usage in percent was
proportionally bigger on the Wallaby because it has less
memory.

CPU performance (Figure 3) stayed constant on the ref-
erence machine. However, the behavior on the Wallaby was
notably different. At launch the server had a CPU usage of
1.5%. This did not stay constant but rather decreased over

0 5 10 15 20 25 30 35
Time in s

0.0

0.5

1.0

1.5

C
P
U
 u
sa
g
e
 i
n
 %

Fig. 3. Idle cpu usage on the Wallaby (blue, dashed) and reference machine
(red)

time ending with 0.7% at the end of the experiment. One
explanation for this behavior could be that this is a result of the
scheduler, while it also could be a result of JIT compilation.

V. CLIENTS

A. Programming Client

Tablet PCs and smartphones are common devices, found
in European and American households [12]. Additionally
educational usage of tablets is becoming more and more
widespread with whole countries, including Austria, starting
to give students access to these gadgets [13] [14] . Because of
that it was decided to create the MissionEDU client as a tablet
app. To broaden the target audience a multi-platform (Android
and iOS) app was deemed to be necessary.

1) Client Concept and Task System: The concept of the
app focuses on the idea of tasks. A task is a representation of
an achievement a student has to accomplish. It consists of a
description of what the student has to do and a list of UDFs
the students can use. By selecting a task, the programming
interface opens through which the program to solve the task
can be created using the graphical blocks of the GPL. It is
designed to reflect the sequence of a robotics course to make
it easily integrable into the workflow of teachers and students.

Additionally there is free mode where students can create
their own programs out of all methods that are available on
the controller.

2) Design: From a design perspective the app uses bold
colors and big icons (depicted in Figure 4) paired with a
minimalistic user interface. These decisions were made to
enhance readability and to make it more appealing to younger
students.

The user interface is divided into three major parts with the
first one being the log-in-screen, the second being the task-
selection-screen and the third being the programming interface
(PI).

In the PI students are displayed an expandable area to create
their code by dragging graphical blocks which describe meth-
ods and flow-control structures and stitching them together.

Fig. 4. A screenshot of the iOS Version in the programming interface view
showing the different colors of the blocks.

3) Implementation: In order to reduce the effort of creating
different apps for every platform they were created using
the cross-platform development toolkit Xamarin. Using this
method one common code base can be used to write apps for
both Android and iOS.

B. Configuration Client

The configurator or configuration client is the second type
of client for MissionEDU. It is designed to be a desktop
application through which the teachers are able to create and
edit tasks as well as methods.

Fig. 5. The Configurator in the task view

1) Functionality: The configurator connects to the server
using the C++ implementation of swockets. It is able to sup-
port multiple connections and features 3 views and a common
side bar. In the side bar connections can be managed. Through
the view ”Tasks” the tasks that are saved on the selected
controller can be edited and new ones can be added (Figure

5). Via the ”Functions” view new methods can be added and
old ones can be adapted. Changes are automatically saved on
the controller and compiled to check for their functionality. If
a method is not compilable the state is reverted.

MissionEDU configurator is a great improvement over the
system of MissionControl where the user had to manually edit
XML files on the controller. [6]

2) Implementation: The configurator was implemented in
C++ using the UI toolkit Qt. Because of the way it is
implemented the configurator at the time of writing supports
macOS and most Linux distributions.

VI. MATESCRIPT

MateScript is the graphical programming language created
from scratch for the MissionEDU project. It is at the time
of publication not yet fully specified and functional and can
therefore be considered a technology preview.

A. Language Description

MateScript is a graphical, functional, strictly typed pro-
gramming language. Its components are described as graphical
blocks with distinct functionality. MateScript consists of flow
control blocks as well as parameterized and non-parameterized
function calls. While the language doesn’t allow function
creation using the graphical blocks, the provided functions
can be used as parameters or in flow control blocks as long
as the data-types match. To reduce complexity only two
levels of depth are supported. The blocks are stacked together
horizontally.

The language supports the data types integer 32 bit, double
precision and bool (according to the C++ specification)[15].
These datatypes can be used as parameters of function calls, in
flow control structures or as return values. There is no support
for variables.

Functions with one or no parameter are supported by
MateScript. Each function call is represented by a distinct
graphical block.

To enable flow control the control structures if, if-else, while
and count are supported. Each of them is represented by a
distinct graphical block. With if and if-else multiple function
calls can be conditioned. With the count loop one or multiple
function calls can be repeated n times. A while loop can be
used to call one or multiple blocks as long as a condition is
met.

B. Graphical Blocks

The graphical blocks of MissionEDU are colored blocks
with an arrowhead like design that symbolizes the way they
are stitched together.

For function calls a graphical block contains the name of
the function, and optionally parameter selectors and space for
other functions to be used as the parameters.

Control structure blocks are of different color and generally
bigger than others. They consist of a starting and an ending
block, between them are the blocks controlled by the structure.
Parameters are included similarly to the function blocks.

C. Parsing and Execution

The graphical code created by the user is parsed into a
syntax tree using the interpreter pattern. From there the code
is executed sequentially. Each function call is transmitted to
the server as a command where the ARS executes it. The
results are sent back to the client and evaluated.

D. Comparison to other GPLs

Although existing and open languages could have been
used, creating one specially for MissionEDU allowed for
greater control and easier integration into the project since
most graphical programming language libraries like Blocky or
TUM.CMS.VPLControl are both platform specific and come
with a pre-defined look and feel. Other graphical programming
languages like the one used in Scratch or Code.org are
application-bound and not really adaptable. MateScript - while
mainly designed for usage within MissionEDU - is designed
to be application agnostic, customizable in regards to the look
and feel, and platform portable.

VII. APPLICATION IN EDUCATION

A. K12 Student Courses

The main focus of MissionEDU during both development
and conception was its usage as an additional tool to be
used in K12 robotics and programming beginner courses. In
such an environment it can be used instead of the original
programming interface to lower the entry barrier by providing
a GPL. Students can then take the same hardware along when
moving forward to a more advanced textual programming
language.

B. Alternative Programming Interface

The project can also be used as an alternative programming
interface to rejuvenate older controllers that might still be
functional. Especially in public schools which often lack
funding this allows the use of older yet functional hardware
and supplies it with actively maintained software. Considering
that through competitions like Botball - where every few years
a new hardware generation is introduced - legacy hardware
is created, MissionEDU could increase the amount of usable
resources.

C. Controller Environment and Front-End

Since MissionEDU provides everything from a configura-
tion tool to a programming interface it could theoretically be
combined with custom firmware to create a controller software
environment. Using the project could decrease the amount of
work needed since all of the front-end software and a program
execution engine would be already implemented.

D. Bridging a fragmented eco system

MissionEDU can also be used to combine a set of different
controllers with similar specs and supply them with a unified
programming interface. Through this the instructors’ effort
would be reduced by only having to explain one kind of
programming interface and set of methods. Also money could

be saved by not needing to update all the hardware at once
but slowly replacing defunct controllers.

VIII. CONCLUSION

MissionEDU is a first step in creating a more unified
experience and providing additional methods of programming
to existing hardware. By making it possible to add graphical
programming to multiple different controllers, old hardware
can be repurposed and younger students can be taught more
easily. It can also be beneficial to educational programs like the
Junior Botball Challenge by providing an additional method
of robot programming.

In the future support for more programming languages for
the ARS should be added. In addition to the graphical pro-
gramming language a simple textual programming language
should be provided. Also the system should be tested in
cooperation with teachers and students of different schools
and ages to find ways of improving the workflow, the user
interface, and the MateScript language.

APPENDIX

The MissionEDU source code will be made publicly avail-
able on http://github.com/MissionEDU.

ACKNOWLEDGMENT

The authors would like to thank Dr. Michael Stifter for his
support during the work on this publication as project advisor.

REFERENCES

[1] R. Skidelsky Rise of the robots: what will the future of work look like?
The Guardian https://www.theguardian.com/business/2013/feb/19/rise-of-
robots-future-of-work, 2013

[2] M. J. Mataric, N. Koenig, D. Feil-Seifer. Materials for Enabling Hands-
On Robotics and STEM Education AAAI Spring Symposium on Robots
and Roboto Venues: Resources for AI Education, March 2007

[3] C. Stein Botball: Autonomous students engineering autonomous
robots https://peer.asee.org/botball-autonomous-students-engineering-
autonomous-robots.pdf, accessed 2017-03-30

[4] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa RoboCup: The
Robot World Cup Initiative http://dl.acm.org/citation.cfm?id=267738,
accessed 2017-03-30

[5] D. Kumar Digital Playgrounds for Early Computing Education acm
Inroads, March 2014

[6] D. Swoboda, D. Honies, R. Weinfurter, M. Pinter, F. Ungersboeck and
C. Kaeferle. Remote Monitoring and Controlling of Robotic Systems with
MissionControl European Conference on Educational Robotics, 2016.

[7] Katalin Popovici and Ahmed Jerraya. Hardware-dependant Software -
Principles and Practice (Chapter 4) Springer, 2009.

[8] D. Swoboda. On Multiplatform TCP Socket Development
swobo.space/multiplatform-networking-tcp-sockets, accessed 2017-
03-30.

[9] KIPR. Wallaby Product page http://botballstore.org/product/wallaby-
controller, accessed 2017-03-30.

[10] PRIA. SCORE! https://pria.at/research/score/, accessed 2017-03-30.
[11] Python Foundation. Python 2.7 Release

https://www.python.org/download/releases/2.7/, accessed 2017-03-23.
[12] M. Sarwar, T. Soomro. Impact of Smartphones’s on Society European

Journal of Scientific Research, Vol. 98 No 2 March, 2013, pp.216-226.
[13] M. Pegrum, C. Howitt, and M. Striepe. Learning to take the tablet: How

pre-service teachers use iPads to facilitate their learning Australasian
Journal of Educational Technology, 2013, 29(4).

[14] Austrian Federal Ministry of Education. Schule 4.0
https://www.bmb.gv.at/schulen/schule40/index.html, accessed 2017-
03-30.

[15] cppreference.com. C++ Basic Concepts - Fundamental types
http://en.cppreference.com/w/cpp/language/types, accessed 2017-03-
30.

